The effect of reactive Bergmann glia on short-term synaptic plasticity in cerebellar neurodegenerative models, caused by chronic activation of ChR2 and expression of the mutant ataxin-1


Cite item

Full Text

Abstract

Introduction. Synaptic plasticity is impaired in the early stages of a neurodegenerative process but is potentially reversible. The study of mechanisms associated with synaptic plasticity in neurodegenerative cerebellar conditions has enabled the search for potential therapeutic agents.

This study aimed to investigate the effect of the astrocytic link on paired-pulse facilitation (PPF) in cerebellar cortical synapses of mice, using a set of immunohistochemical, optogenetic, and electrophysiological analysis methods.

Materials and methods. Experiments were conducted on 12-week-old CD-1 mice. The model of murine cerebellar astrogliosis was created using chronic activation of light-sensitive ChR2 channels in Bergmann glia and after they expressed the mutant ataxin-1. To model astrocyte-mediated neurodegeneration, these mice were intracortically administered AVV GFAP-ChR2-mKate vector constructions with subsequent chronic 4-day light stimulation in vivo and LVV GFAP-ATXN1[Q85]-Flag without light stimulation. Mice in the control group were administered normal saline or LVV GFAP-ATXN1[Q2]-Flag. Changes in the PFF-excitatory postsynaptic currents in Purkinje cells were registered using the patch-clamp technique. Immunohistochemistry was used to examine anti-GFAP, mKate, and anti-ataxin-1 expression in the cerebellar cortex.

Results. For the reactive glia in the cerebellar cortex after chronic photostimulation, increased anti-GFAP immune reactivity and morphology changes in the form of process tortuosity were common. In Purkinje cell synapses with parallel fibers in these animals, the PPF coefficient was significantly increased because of impaired glutamate reuptake and presynaptic overexcitation with this neuromediator. However, photoactivation of reactive Bergmann glia led to a sharp slowing down of the glutamate-glutamine cycle and glutamate pool depletion in the presynapse, with a subsequent gradual reduction in the PPF coefficient. Such pathological mechanisms were found in the neurodegenerative model with selective damage to Bergmann glia by the mutant ataxin-1.

Conclusion. Astrocytes affect short-term synaptic plasticity such as PPF. In cerebellar astrogliosis, the PPF disturbance is multilevel: the high baseline level of PPF is significantly reduced after Bergmann glial activation, which is related to impaired glutamate reuptake by reactive glial cells.

About the authors

Аnton N. Shuvaev

Voyno-Yasenetsky Krasnoyarsk State Medical University ; Siberian Federal University

Author for correspondence.
Email: shuvaevanton@hotmail.com
Russian Federation, Krasnoyarsk

Оlga S. Belozor

Voyno-Yasenetsky Krasnoyarsk State Medical University

Email: shuvaevanton@hotmail.com
Russian Federation, Krasnoyarsk

Oleg I. Mozjei

Immanuel Kant Baltic Federal University

Email: shuvaevanton@hotmail.com
Russian Federation, Kaliningrad

Daria A. Yakovleva

Siberian Federal University

Email: shuvaevanton@hotmail.com
Russian Federation, Krasnoyarsk

Аndrey N. Shuvaev

Siberian Federal University

Email: shuvaevanton@hotmail.com
Russian Federation, Krasnoyarsk

Marina V. Smolnikova

Voyno-Yasenetsky Krasnoyarsk State Medical University; Research Institute of Medical Problems of the North, Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: shuvaevanton@hotmail.com
Russian Federation, Krasnoyarsk

Еlena A. Pozhilenkova

Voyno-Yasenetsky Krasnoyarsk State Medical University

Email: shuvaevanton@hotmail.com
Russian Federation, Krasnoyarsk

S. . Каsparov

University of Bristol

Email: shuvaevanton@hotmail.com
United Kingdom, Bristol

Vladimir V. Salmin

Voyno-Yasenetsky Krasnoyarsk State Medical University

Email: shuvaevanton@hotmail.com
Russian Federation, Krasnoyarsk

Аlla B. Salmina

Voyno-Yasenetsky Krasnoyarsk State Medical University

Email: shuvaevanton@hotmail.com
Russian Federation, Krasnoyarsk

References

  1. Goodlett C.R., Mittleman G. The Cerebellum. In: Conn P.M. (ed.). Conn's Translational Neuroscience. London, 2016: 191–212. doi: 10.1016/C2014-0-02630-5.
  2. Tyrrell T., Willshaw D. Cerebellar cortex: its simulation and the relevance of Marr's theory. Philos Trans R Socb Lond B Biol Sci. 1992; 336(1277): 239–257. doi: 10.1098/rstb.1992.0059. PMID: 1353267.
  3. Hughes J.R. Post-tetanic рotentiation. Physiol Rev. 1958; 38(1): 91–113. doi: 10.1152/physrev.1958.38.1.91. PMID: 13505117.
  4. Regehr W.G. Short-term presynaptic plasticity. Cold Spring Harb Perspect Biol. 2012; 4(7): a005702. doi: 10.1101/cshperspect.a005702. PMID: 22751149.
  5. Díaz-Rojas F., Sakaba T., Kawaguchi S.Y. Ca2+ current facilitation determines short-term facilitation at inhibitory synapses between cerebellar Purkinje cells. J Physiol. 2015; 593(22): 4889–4904. doi: 10.1113/JP270704. PMID: 26337248.
  6. Zucker R.S., Regehr W.G. Short-term synaptic plasticity. Annu Rev Physiol. 2002; 64: 355–405. doi: 10.1146/annurev.physiol.64.092501.114547. PMID: 11826273.
  7. Tani H., Dulla C.G., Farzampour Z. et al. A local glutamate-glutamine cycle sustains synaptic excitatory transmitter release. Neuron. 2014; 81(4): 888–900. doi: 10.1016/j.neuron.2013.12.026. PMID: 24559677.
  8. Lee A., Anderson A.R., Beasley S.J. et al. A new splice variant of the glutamate-aspartate transporter: cloning and immunolocalization of GLAST1c in rat, pig and human brains. J Chem Neuroanat. 2012; 43(1): 52–63. doi: 10.1016/j.jchemneu.2011.10.005. PMID: 22026960.
  9. Valtcheva S., Venance L. Control of long-term plasticity by glutamate transporters. Front Synaptic Neurosci. 2019; 11: 10. doi: 10.3389/fnsyn.2019.00010. PMID: 31024287.
  10. Belozor O.S., Yakovleva D.A., Potapenko I.V. et al. Extracellular S100β disrupts Bergman glia morphology and synaptic transmission in cerebellar Purkinje cells. Brain Sci. 2019; 9(4): pii: E80. doi: 10.3390/brainsci9040080. PMID: 31013844.
  11. Klement I.A., Skinner P.J., Kaytor M.D. et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell. 1998; 95(1): 41–53. doi: 10.1016/s0092-8674(00)81781-x. PMID: 9778246.
  12. Zinebi F., Russell R.T., McKernan M., Shinnick-Gallagher P. Comparison of paired-pulse facilitation of AMPA and NMDA synaptic currents in the lateral amygdala. Synapse. 2001; 42(2): 115–127. doi: 10.1002/syn.1107. PMID: 11574948.
  13. Shuvaev A.N., Hosoi N., Sato Y. et al. Progressive impairment of cerebellar mGluR signalling and its therapeutic potential for cerebellar ataxia in spinocerebellar ataxia type 1 model mice. J Physiol. 2017; 595(1): 141–164. doi: 10.1113/JP272950. PMID: 27440721.
  14. Liu B., Paton J.F., Kasparov S. Viral vectors based on bidirectional cell-specific mammalian promoters and transcriptional amplification strategy for use in vitro and in vivo. BMC Biotechnol. 2008; 8: 49. doi: 10.1186/1472-6750-8-49. PMID: 18485188.
  15. Gourine A.V., Kasymov V., Marina N. et al. Astrocytes сontrol breathing through pH-dependent release of ATP. Science. 2010; 329(5991): 571–575. doi: 10.1126/science.1190721. PMID: 20647426.
  16. Figueiredo M., Lane S., Stout R.F. Jr. et al. Comparative analysis of optogenetic actuators in cultured astrocytes. Cell Calcium. 2014; 56(3): 208–214. doi: 10.1016/j.ceca.2014.07.007. PMID: 25109549.
  17. Hewinson J., Paton J.F., Kasparov S. Viral gene delivery: optimized protocol for production of high titer lentiviral vectors. Methods Mol Biol. 2013; 998: 65–75. doi: 10.1007/978-1-62703-351-0_5. PMID: 23529421.
  18. Han C.L., Zhao X.M., Liu Y.P. et al. Gene expression profiling of two epilepsy models reveals the ECM/Integrin signaling pathway is involved in epiletogenesis. Neuroscience. 2019; 396: 187–199. doi: 10.1016/j.neuroscience.2018.10.021. PMID: 30452975.
  19. Satake S., Inoue T., Imoto K. Paired-pulse facilitation of multivesicular release and intersynaptic spillover of glutamate at rat cerebellar granule cell-interneurone synapses. J Physiol. 2012; 590(22): 5653–5675. doi: 10.1113/jphysiol.2012.234070. PMID: 22930264.
  20. Armbruster M., Hanson E., Dulla C.G. Glutamate clearance is locally modulated by presynaptic neuronal activity in the cerebral cortex. J Neurosci. 2016; 36(40): 10404–10415. doi: 10.1523/JNEUROSCI.2066-16.2016. PMID: 27707974.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Shuvaev А.N., Belozor О.S., Mozjei O.I., Yakovleva D.A., Shuvaev А.N., Smolnikova M.V., Pozhilenkova Е.A., Каsparov S..., Salmin V.V., Salmina А.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».