Mitochondrial arteriopathy, a suspected cause of spontaneous dissection of the internal carotid and vertebral arteries

Abstract

Dissection of the internal carotid artery and vertebral artery (ICA/VA) is one of the leading causes of ischaemic stroke in young people. The reason for the arterial wall weakness leading to its dissection remains unclear. Morphological study of the ICA/VA, and clinical data, indicate the presence of connective tissue dysplasia in patients, which is not associated with any known hereditary diseases.

In this article, the authors summarize the results of their studies (histological and histochemical examination of muscle biopsies, electron microscopy of skin arteries) and observations (stroke-like episode, A3243G mutation in the mitochondrial genome in a patient with repeat ICA/VA dissections; increased peak lactate during MR spectroscopy in a patient who suffered an ICA dissection, then lobar hemorrhages a few years later). Based on these, the authors propose mitochondrial arteriopathy as the cause of arterial wall dysplasia leading to dissection. This article provides data on the presence of mitochondrial disorders in patients with ICA/VA dissection.

About the authors

Ludmila A. Kalashnikova

Research Center of Neurology

Author for correspondence.
Email: kalashnikovancn@yandex.ru
Russian Federation, Moscow

Alla V. Sakharova

Research Center of Neurology

Email: kalashnikovancn@yandex.ru
Russian Federation, Moscow

Roksana P. Chaikovskaya

Research Center of Neurology

Email: kalashnikovancn@yandex.ru
Russian Federation, Moscow

Larisa A. Dobrynina

Research Center of Neurology

Email: kalashnikovancn@yandex.ru
Russian Federation, Moscow

Tat'yana S. Gulevskaya

Research Center of Neurology

Email: kalashnikovancn@yandex.ru
Russian Federation, Moscow

Mariia V. Gubanova

Research Center of Neurology

Email: kalashnikovancn@yandex.ru
Russian Federation, Moscow

Anastasiya S. Voronkova

Research Center of Neurology

Email: kalashnikovancn@yandex.ru
Russian Federation, Moscow

Vladimir S. Sukhorukov

Research Center of Neurology

Email: kalashnikovancn@yandex.ru
Russian Federation, Moscow

References

  1. Kalashnikova L.A., Dobrynina L.A. [Dissection of cerebral arteries: ischemic stroke and other clinical manifestations]. Moscow, 2013. 208 p. (In Russ.)
  2. Kalashnikova L.A., Dreval M.V., Krotenkova M.V. [Modern possibilities of visualization of spontaneous dissection of extracranial sections of the internal carotid and vertebral arteries]. Meditsinskaya vizualizatsiya. 2012; (3): 59–69. (In Russ.)
  3. Kalashnikova L.A., Dobrinina L.A., Dreval M.V. et al. [Neck pain and headache as the only manifestation of cervical artery dissection]. Zh Nevrol Psikhiatr Im S S Korsakova. 2015; 115(3): 9–16. doi: 10.17116/jnevro2015115319-16. PMID: 26120975. (In Russ.)
  4. Débette S. Pathophysiology and risk factors for cervical artery dissection: what have we learned from large hospital-based cohorts? Curr Opin Neurol. 2014; (1): 20–28. doi: 10.1097/WCO.0000000000000056. PMID: 24300790.
  5. Shishkina L.V., Smirnov A.V., Myakota A.E. [Acute dissecting cerebral vascular aneurysm]. Voprosy neyrokhirurgii im. N.N. Burdenko. 1986; (3): 54–57. (In Russ.)
  6. Wolman L. Cerebral dissecting aneurysms. Brain. 1959; 82: 276–291.
  7. Sharif A.A., Remley K.B., Clark H.B. Middle cerebral artery dissection: a clinicopathologic study. Neurology. 1995; 45(10): 1929–1931. doi: 10.1212/wnl.45.10.1929. PMID: 7477997.
  8. Chang V., Rewcastle N.B., Harwood-Nash D.C.F., Norman M.G. Bilateral dissecting aneurysms of the intracranial internal carotid arteries in an 8-year-old boy. Neurology. 1975; 25(6): 573–579. doi: 10.1212/wnl.25.6.573. PMID: 1168877.
  9. Kalashnikova L.A., Gulevskaya T.S., Anufriev P.L., Gnedovskaya E.V., Konovalov R.N., PiradovM.A. [Ischemic stroke in young age due to dissection of intracranial carotid artery and its branches (clinical and morphological study)]. Annals of clinical and experimental neurology 2009; 3(1): 18–24. (In Russ.)
  10. Kalashnikova L.A., Chaykovskaya R.P., Dobrynina L.A. et al. [Internal carotid artery dissection as a cause of severe ischemic stroke with lethal outcome]. Zh Nevrol Psikhiatr Im S S Korsakova. 2015; 115(12 Pt 2): 19–25. doi: 10.17116/jnevro201511512219-25. PMID: 26978635. (In Russ.)
  11. Kalashnikova L.A., Gulevskaya T.S., Anufriev P.L. et al. [Lоwer cranial nerve palsiаs in the internаl carotid artery dissection]. Annals of clinical and experimental neurology 2008; 2(1): 22–27. (In Russ.)
  12. Kalashnikova L.A., Chaykovskaya R.P., Gulevskaya T.S. et al. [Intimal rupture of the displastic middle cerebral artery wall complicated by thrombosis and fatal ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova. 2018; 118(3. Vyp. 2): 9–14. doi: 10.17116/jnevro2018118329-14. PMID: 29798974. (In Russ.)
  13. Brandt T., Hausser I., Orberk E. et al. Ultrastructural connective tissue abnormalities in patients with spontaneous cervicocerebral artery dissections. Ann Neurol. 1998; 44(2): 281–285. doi: 10.1002/ana.410440224. PMID: 9708556.
  14. Brandt T., Morcher M., Hausser I. Association of cervical artery dissection with connective tissue abnormalities in skin and arteries. Front Neurol Neurosci. 2005; 20; 16–29. doi: 10.1159/000088131. PMID: 17290108.
  15. Gubanova М.V., Kalashnikova L.А., Dobrynina L.А. [Markers of connective tissue dysplasia in cervical artery dissection and its predisposing factors]. Annals of clinical and experimental neurology. 2017; 11(4): 19–28. doi: 10.18454/ACEN.2017.4.2. (In Russ.)
  16. Giossi A., Ritelli M., Costa P. et al. Connective tissue anomalies in patients with spontaneous cervical artery dissection. Neurology. 2014; 83(22): 2032–2037. doi: 10.1212/WNL.0000000000001030. PMID: 25355826.
  17. Gubanova M.V., Kalashnikova L.A., Dobrynina L.A. et al. [Biomarkers of connective tissue dysplasia in patients with dissection of the internal carotid and vertebral arteries]. Zh Nevrol Psikhiatr Im S S Korsakova. 2019; 119(5-2): 395. (In Russ.)
  18. Grond-Ginsbach C., Thomas-Feles C., Werner I. et al. Mutations in the tropoelastin gene (ELN) were not found in patients with spontaneous cervical artery dissections. Stroke. 2000; 31: 1935–1938. doi: 10.1161/01.str.31.8.1935. PMID: 10926960.
  19. Grond-Ginsbach C., Weber R., Haas J. et al. Mutations in the COL5A1 coding sequence are not common in patients with spontaneous cervical artery dissections. Stroke. 1999; 30: 1887–1890. doi: 10.1161/01.STR.30.9.1887. PMID: 10471441.
  20. Grond-Ginsbach C., Wigger F., Morcher M. et al. Sequence analysis of the COL5A2 gene in patients with spontaneous cervical artery dissections. Neurology. 2002; 58(7): 1103–1105. doi: 10.1212/WNL.58.7.1103. PMID: 11940702.
  21. Martin J.J., Hausser I., Lyrer P. et al. Familial cervical artery dissections: clinical, morphologic, and genetic studies. Stroke. 2006; 37(12): 2924–2929. doi: 10.1161/01.STR.0000248916.52976.49. PMID: 17053184.
  22. Kuhlenbäumer G., Müller U.S., Besselmann M. et al. Neither collagen 8A1 nor 8A2 mutations play a major role in cervical artery dissection. A mutation analysis and linkage study. J Neurol. 2004; 251(3): 357–359. doi: 10.1007/s00415-004-0335-1. PMID: 15015022.
  23. Debette S., Kamatani Y., Metso T.M. et al. Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection. Nat Genet. 2015; 47(1): 78–83. doi: 10.1038/ng.3154. PMID: 25420145.
  24. Gornik H.L., Persu A., Adlam D. et al. First International Consensus on the diagnosis and management of fibromuscular dysplasia. Vascular Medicine. 2019; 24(2): 164–189. doi: 10.1177/1358863X18821816. PMID: 30648921.
  25. Gupta R.M., Hadaya J., Trehan A. et al. A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression. Cell. 2017; 170(3): 522–533.e15. doi: 10.1016/j.cell.2017.06 .049. PMID: 28753427.
  26. Ohama E., Ohara S., Ikuta F. et al. Mitochondrial angiopathy in cerebral blood vessels of mitochondrial encephalomyopathy. Acta Neuropathol. 1987; 74(3): 226–233. doi: 10.1007/BF00688185. PMID: 3673514.
  27. Betts J., Lightowlers R.N., Turnbull D.M. Neuropathological aspects of mitochondrial DNA disease. Neurochem Res. 2004; 29: 505–511. doi: 10.1023/B:NERE.0000014821.07269.8d. PMID: 15038598.
  28. Dobrynina L.A., Kalashnikova L.A. [Stroke-like disorders and ischemic strokes in mitochondrial diseases]. Klinicheskaya meditsina. 2010; (6): 7–14. (In Russ.)
  29. Kalashnikova L.A., Sakharova A.V., Dobrynina L.A. et al. [Mitochondrial arteriopathy is the cause of spontaneous dissection of cerebral arteries]. Zh Nevrol Psikhiatr Im S S Korsakova. 2010; (4; Suppl. Stroke): 3–11. (In Russ.)
  30. Filosto M., Tomelleri G., Tonin P. et al. Neuropathology of mitochondrial diseases. Biosci Rep. 2007; 27(1–3):23–30. doi: 10.1007/s10540-007-9034-3. PMID: 17541738.
  31. Muscle biopsy. A practical approach. Eds. by V. Dubowitz, C. Sewry, A. Oldfors. Elsevier, 2007: 480–492.
  32. Sarnat H.B., Marin-Garcia J. Pathology of mitochondrial encephalomyopathies. Can J Neurol Sci 2005; 32(2):152–166. doi: 10.1017/s0317167100003929. PMID: 16018150.
  33. Zeviani M., Di Donato S. Mitochondrial disorders. Brain. 2004, 127(10): 2153–2172. doi: 10.1093/brain/awh259. PMID: 15358637.
  34. Sakharova A.V., Kalashnikova L.A., Dobrynina L.A. et al. [Ultrastructural changes in skin arteries in patients with spontaneous dissection of cerebral arteries]. Zh Nevrol Psikhiatr Im S S Korsakova. 2011; (7): 54–60. (In Russ.)
  35. Kalashnikova L.A., Dobrynina L.A., Sakharova A.V. et al. [The A3243G mitochondrial DNA mutation in cerebral artery dissections]. Zh Nevrol Psikhiatr Im S S Korsakova. 2012; 112(1): 84–89. PMID: 22678682. (In Russ.)
  36. Sakharova A.V., Kalashnikova L.A., Chaikovskaya R.P., Dobrynina L.A. [Morphological and ultrastructural signs of mitochondrial cytopathy in skeletal muscles and microvessels of muscles and skin during dissection of cerebral arteries associated with the A3243G mutation in mitochondrial DNA]. Arkhiv patologii. 2012; 74(2): 51–56. (In Russ.)
  37. Tay S.H., Nordli D.R. Jr, Bonilla E. et al. Aortic rupture in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes. Arch Neurol. 2006; 63(2): 281–283. doi: 10.1001/archneur.63.2.281. PMID: 16476819.
  38. Ryther R.C.C., Cho-Park Y.A. Lee J.W. Carotid dissection in mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes. J Neurol. 2011; 258: 912–914. doi: 10.1007/s00415-010-5818-7. PMID: 21076841.
  39. Mancuso M., Montano V., Orsucci D. et al. Mitochondrial m.3243ANG mutation and carotid artery dissection. Mol Genet Metab Rep. 2016; 9: 12–14. doi: 10.1016/j.ymgmr.2016.08.010. PMID: 27656415.
  40. Kalashnikova L.A., Dobrynina L.A., Dreval M.V. et al. [Intracerebral hemorrhage in the late period of internal carotid artery dissection]. h Nevrol Psikhiatr Im S S Korsakova. 2019; 119 (8, Vyp. 2): 28–34. doi: 10.17116/jnevro201911908228. PMID: 31825359. (In Russ.)
  41. Noguchi A., Shoji Y., Matsumori M. et al. Stroke-like episode involving a cerebral artery in a patient with MELAS. Pediatr Neurol. 2005; 33(1): 70–71. doi: 10.1016/j.pediatrneurol.2005.01.013. PMID: 15993323.
  42. Yoshida T., Ouchi A., Miura D. et al. MELAS and reversible vasoconstriction of the major cerebral arteries. Intern Med. 2013; 52(12): 1389–1392. doi: 10.2169/internalmedicine.52.0188. PMID: 23774553.
  43. Iizuka T., Goto Y., Miyakawa S. et al. Progressive carotid artery stenosis with a novel tRNA phenylalanine mitochondrial DNA mutation. J Neurol Sci. 2009; 278(1–2): 35–40. doi: 10.1016/j.jns.2008.11.016. PMID: 19091329.
  44. Xing G., Chuan-Qiang P.U., Wei-Ping W.U. Radiological features of cerebral artery in patients with mitochondrial encephalomyopathy. J Brain Nervous Dis 2008; 12: 123–125. doi: 10.1007/s00062-018-0662-8. PMID: 29464268.
  45. Longo N., Schrijver I, Vogel H. et al. Progressive cerebral vascular degeneration with mitochondrial encephalopathy. Am J Med Genet A. 2008. 146A(3): 361–367. doi: 10.1002/ajmg.a.31841. PMID: 18203188.
  46. Baleva L.S., Sukhorukov V.S., Marshall T. et al. Higher risk for carcinogenesis for residents populating the isotope-contaminated territories as assessed by NanoString Gene Expression Profiling. J Transl Sci. 2017; 3(3): 1–6. doi: 10.15761/JTS.1000183.
  47. Eastel J.M., Lam K.W., Lee N.L. et al. Application of NanoString technologies in companion diagnostic development. Expert Rev Mol Diagn. 2019; 19(7): 591–598. doi: 10.1080/14737159.2019.1623672. PMID: 31164012.
  48. Koch C.M., Chiu S.F., Akbarpour M. et al. A beginner's guide to analysis of RNA sequencing data. Am J Respir Cell Mol Biol. 2018; 59(2): 145–157. doi: 10.1165/rcmb.2017-0430TR. PMID: 29624415.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Kalashnikova L.A., Sakharova A.V., Chaikovskaya R.P., Dobrynina L.A., Gulevskaya T.S., Gubanova M.V., Voronkova A.S., Sukhorukov V.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».