Statins pharmacogenetics: metabolizing enzymes and transporters polymorphisms role
- Authors: Leonova M.V1, Gaysenok O.V2, Leonov A.S2
-
Affiliations:
- Interregional Public Organization «Russian Association of Clinical Pharmacologists»
- Joint Hospital with Polyclinic of the Administrative Department of the President of the Russian Federation
- Issue: Vol 20, No 10 (2018)
- Pages: 20-28
- Section: Articles
- URL: https://ogarev-online.ru/2075-1753/article/view/95063
- DOI: https://doi.org/10.26442/2075-1753_2018.10.20-28
- ID: 95063
Cite item
Full Text
Abstract
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
M. V Leonova
Interregional Public Organization «Russian Association of Clinical Pharmacologists»
Email: anti23@mail.ru
чл.-кор. РАЕН, д-р мед. наук, проф., клинический фармаколог, член
O. V Gaysenok
Joint Hospital with Polyclinic of the Administrative Department of the President of the Russian Federation
Email: ovgaisenok@fgu-obp.ru
канд. мед. наук, зав. отд-нием общей кардиологии 119285, Russian Federation, Michurinskiy pr-t, d. 6
A. S Leonov
Joint Hospital with Polyclinic of the Administrative Department of the President of the Russian Federation
Email: henry1214@mail.ru
врач-терапевт, клинический фармаколог 119285, Russian Federation, Michurinskiy pr-t, d. 6
References
- Kapur N.K, Musunuru K. Clinical efficacy and safety of statins in managing cardiovascular risk. Vasc Health Risk Manag 2008; 4: 341-53.
- Vaughan C.J, Gotto A.M Jr. Update on statins: 2003. Circulation 2004; 110: 886-92.
- Tonelli M, Lloyd A, Clement F et al. Efficacy of statins for primary prevention in people at low cardiovascular risk: a meta-analysis. CMAJ 2011; 183 (16): Е1189-Е1202.
- Cholesterol Treatment Trialists (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90056 participants in 14 randomized trials of statins. Lancet 2005; 366 (9493): 1267-78.
- Mills E.J, Wu P, Chong G et al. Efficacy and safety of statin treatment for cardiovascular disease: a network meta-analysis of 170 255 patients from 76 randomized trials. Q J Med 2011; 104 (2): 109-24.
- Zineh I. Pharmacogenetics of Response to Statins. Curr Аtheroscler Rep 2007; 9 (3): 187-94.
- Pazzucconi F, Dorigotti F, Gianfranceschi G et al. Therapy with HMG CoA reductase inhibitors: characteristics of the long-term permanence of hypocholesterolemic activity. Atherosclerosis 1995; 117: 189-98.
- Williams D, Feely J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet 2002; 41 (5): 343-70.
- Neuvonen P.J. Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics. Curr Opin Investig Drugs 2010; 11 (3): 323-32.
- Geisel J, Kivistö K.T, Griese E.U, Eichelbaum M. The efficacy of simvastatin is not influenced by CYP2D6 polymorphism. Clin Pharmacol Ther 2002; 72 (5): 595-6.
- Lamba J.K, Lin Y.S, Schuetz E.G, Thummel K.E. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54 (10): 1271-94.
- Kajinami K, Brousseau M.E, Ordovas J.M, Schaefer E.J. CYP3A4 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin in primary hypercholesterolemia. Am J Cardiol 2004; 93: 104-7.
- Kivisto K.T, Niemi M, Schaeffeler E et al. Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics 2004; 14: 523-5.
- Kolovou G, Kolovou V, Ragia G et al. CYP3A5 genotyping for assessing the efficacy of treatment with simvastatin and atorvastatin. Genet Mol Biol 2015; 38 (2): 129-37.
- Willrich M.A, Hirata M.H, Genvigir F.D et al. CYP3A53A allele is associated with reduced lowering-lipid response to atorvastatin in individuals with hypercholesterolemia. Clin Chim Acta 2008; 398: 15-20
- Bailey K.M, Romaine S.P, Jackson B.M et al. Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: the GEOSTAT-1 Study. Circ Cardiovasc Genet 2010; 3: 276-85.
- Kirchheiner J, Kudlicz D, Meisel C et al. Influence of CYP2C9 polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (-)-3S,5R-fluvastatin and (+)-3R,5S-fluvastatin in healthy volunteers. Clin Pharmacol Ther 2003; 74 (2): 186-94.
- Lin J, Zhang Y, Zhou H et al. CYP2C9 genetic polymorphism is a potential predictive marker for the efficacy of rosuvastatin therapy. Clin Lab 2015; 61: 1317-24.
- Niemi M, Pasanen M.K, Neuvonen P.J. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 2011; 63: 157-81.
- Niemi M, Pasanen M.K, Neuvonen P.J. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin Pharmacol Ther 2006; 80: 356-66.
- Pasanen M.K, Neuvonen M, Neuvonen P.J, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics 2006; 16: 873-9.
- Pasanen M.K, Fredrikson H, Neuvonen P.J, Niemi M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 2007; 82: 726-33.
- Deng J.W, Song I.S, Shin H.J et al. The effect of SLCO1B1*15 on the disposition of pravastatin and pitavastatin is substrate dependent: the contribution of transporting activity changes by SLCO1B1*15. Pharmacogenet Genomics 2008; 18: 424-33.
- Tachibana-Iimori R, Tabara Y, Kusuhara H et al. Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab Pharmacokinet 2004; 19: 375-80.
- Семенов А.В., Сычев Д.А., Кукес В.Г. Влияние полиморфизма генов SLCO1B1 и MDR1 на фармакокинетику и фармакодинамику аторвастатина у пациентов с первичной гиперхолестеринемией. Результаты пилотного фармакогенетического исследования. Рациональная фармакотерапия в кардиологии. 2008; 2: 47-50.
- Fu Q, Li Y.P, Gao Y et al. Lack of association between SLCO1B1 polymorphism and the lipid-lowering effects of atorvastatin and simvastatin in Chinese individuals. Eur J Clin Pharmacol 2013; 69: 1269-74.
- Yang G.P, Yuan H, Tang B et al. Lack of effect of genetic polymorphisms of SLCO1B1 on the lipid-lowering response to pitavastatin in Chinese patients. Acta Pharmacol Sin 2010; 31: 382-6.
- Dou Y, Zhu X, Wang Q et al. Meta-analysis of the SLCO1B1 c.521T>C variant reveals slight influence on the lipid-lowering efficacy of statins. Ann Lab Med 2015; 35: 329-35.
- Dai R, Feng J, Wang Y et al. Association between SLCO1B1 521T>C and 388A>G polymorphisms and statin effectiveness: a meta-analysis. J Ahteroscler Thrombos 2015; 22 (8): 796-815.
- Thompson P.D, Clarkson P, Karas R.H. Statin-associated myopathy. JAMA 2003; 289 (13): 1681-90.
- Stroes E.S, Thompson P.D, Corsini A et al. Statin-associated muscle symptoms: impact on statin therapy-European Atherosclerosis Society consensus panel statement on assessment, aetiology and management. Eur Heart J 2015; 36 (17): 1012-22.
- SEARCH Collaborative Group, Link E, Parish S, Armitage J et al. SLCO1B1 variants and statin-induced myopathy - a genomewide study. N Engl J Med 2008; 359: 789-99.
- Voora D, Shah S.H, Spasojevic I et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J Am Coll Cardiol 2009; 54: 1609-16.
- Puccetti L, Ciani F, Auteri A. Genetic involvement in statins induced myopathy. Preliminary data from an observational case-control study. Atherosclerosis 2010; 211 (1): 28-9.
- Santos P.C, Gagliardi A.C, Miname M.H et al. SLCO1B1 haplotypes are not associated with atorvastatin-induced myalgia in Brazilian patients with familial hypercholesterolemia. Eur J Clin Pharmacol 2012; 68 (3): 273-9.
- Danik J.S, Chasman D.I, MacFadyen J.G et al. Lack of association between SLCO1B1 polymorphisms and clinical myalgia following rosuvastatin therapy. Am Heart J 2013; 165 (6): 1008-14.
- Canestaro W.J, Austin M.A, Thummel K.E. Genetic factors affecting statin concentrations and subsequent myopathy: a HuGENet systematic review. Genet Мed 2014; 16 (11): 810-9.
- Ferrari M, Guasti L, Maresca A et al. Association between statin-induced creatine kinase elevation and genetic polymorphisms in SLCO1B1, ABCB1 and ABCG2. Eur J Clin Pharmacol 2014; 70 (5): 539-47.
- Hou Q, Li S, Li L et al. Association Between SLCO1B1 Gene T521C Polymorphism and Statin-Related Myopathy Risk: A Meta-Analysis of Case-Control Studies. Medicine 2015; 94 (37): e1268.
- Jiang J, Tang Q, Feng J et al. Association between SLCO1B1 -521T>C and -388A>G polymorphisms and risk of statin-induced adverse drug reactions: A meta-analysis. Springerplus 2016; 5: 1368.
- US Food and Drug Administration FDA Drug Safety Communication: Ongoing safety review of high-dose Zocor (simvastatin) and increased risk of muscle injury. 2010 http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm204882..
- Wilke R.A, Ramsey L.B, Johnson S.G et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther 2012; 92 (1): 112-7.
- Ramsey L.B, Johnson S.G, Caudle K.E et al. The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther 2014; 96: 423-8.
- Hu M, To K.K.W, Mak V.W.L, Tomlinson B. The ABCG2 transporter and its relations with the pharmacokinetics, drug interaction and lipid-lowering effects of statins. Expert Opin Drug Metab Toxicol 2011; 7 (1): 49-62.
- Kitzmiller J.P, Mikulik E.B, Dauki A.M et al. Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmacogenom Personalized Medicine 2016; 9: 97-106.
- Brambila-Tapia A.J. MDR1 (ABCB1) polymorphisms: functional effects and clinical implications. Rev Invest Clin 2013; 65 (5): 445-54.
- Сычев Д.А., Игнатьев И.В., Андреев Д.А. и др. Носительство полиморфного маркера С3435Т гена MDR1 как фактор риска развития гликозидной интоксикации у больных хронической недостаточностью, длительно принимающих дигоксин. Материалы VI конференции «Сердечная недостаточность 2005». 2005; с. 9-10.
- Keskitalo J, Kurkinen K, Neuvonen P, Niemi M. ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin Pharmacol Ther 2008; 84 (4): 457-61.
- Zhou Q, Ruan Z.R, Yuan H et al. ABCB1 gene polymorphisms, ABCB1 haplotypes and ABCG2 c.421c > A are determinants of inter-subject variability in rosuvastatin pharmacokinetics. Pharmazie 2013; 68 (2): 129-34.
- Keskitalo J.E, Kurkinen K.J, Neuvonen M et al. No significant effect of ABCB1 haplotypes on the pharmacokinetics of fluvastatin, pravastatin, lovastatin, and rosuvastatin. Br J Clin Pharmacol 2009; 68: 207-13.
- Fiegenbaum M, da Silveira F.R, Van der Sand CR et al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin Pharmacol Ther 2005; 78 (5): 551-8.
- Маль Г.С., Кувшинова Ю.А. Применение гиполипидемических препаратов с помощью генетических маркеров у больных ИБС. LJournal.ru. 2013; 3.
- Su J, Xu H, Yang J et al. ABCB1 C3435T polymorphism and the lipid-lowering response in hypercholesterolemic patients on statins: a meta-analysis. Lipids Health Dis 2015; 14: 1-10.
- Tomlinson B, Hu M, Lee V.W et al. ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin Pharmacol Ther 2010; 87: 558-62.
Supplementary files
