Artificial intelligence in neuroscience: opportunities and prospects: A review
- Authors: Rezvanova A.A.1, Kovalchuk N.A.1
-
Affiliations:
- Sechenov First Moscow State Medical University (Sechenov University)
- Issue: Vol 27, No 2 (2025): Neurology and Rheumatology
- Pages: 119-122
- Section: Articles
- URL: https://ogarev-online.ru/2075-1753/article/view/288844
- DOI: https://doi.org/10.26442/20751753.2025.2.203158
- ID: 288844
Cite item
Full Text
Abstract
The review examines practical examples of the use of artificial intelligence in the diagnosis of neurological diseases such as stroke, traumatic brain injuries, neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, multiple sclerosis, as well as epilepsy and sleep disorders. The basic concepts of AI and machine learning, the problems associated with their implementation, and the prospects for further development of technologies aimed at improving the accuracy and effectiveness of medical care in neurology are discussed.
Full Text
##article.viewOnOriginalSite##About the authors
Anastasiya A. Rezvanova
Sechenov First Moscow State Medical University (Sechenov University)
Author for correspondence.
Email: kovalchuk_n_a@staff.sechenov.ru
ORCID iD: 0009-0002-7585-2817
Student
Russian Federation, MoscowNadezhda A. Kovalchuk
Sechenov First Moscow State Medical University (Sechenov University)
Email: kovalchuk_n_a@staff.sechenov.ru
ORCID iD: 0000-0002-8437-7205
Cand. Sci. (Med.)
Russian Federation, MoscowReferences
- Бердутин В.А., Абаева О.П., Романова Т.Е., Романов С.В. Применение искусственного интеллекта в медицине: достижения и перспективы. Обзор литературы. Часть 1. Социология медицины. 2022;21(1):83-96 [Berdutin VA, Abayeva OP, Romanova TE., Romanov SV. Primenenie iskusstvennogo intellekta v meditsine: dostizheniia i perspektivy. Obzor literatury. Chast 1. Sotsiologia meditsiny. 2022;21(1):83-96 (in Russian)].
- Subrahmanya SVG, Shetty DK, Patil V, et al. The role of data science in healthcare advancements: applications, benefits, and future prospects. Ir J Med Sci. 2022;191(4):1473-83. doi: 10.1007/s11845-021-02730-z
- Dipietro L, Gonzalez-Mego P, Ramos-Estebanez C, et al. The evolution of Big Data in neuroscience and neurology. J Big Data. 2023;10(1). doi: 10.1186/s40537-023-00751-2
- Андропова П.Л., Гаврилов П.В., Савинцева Ж.И., и др. Применение систем искусственного интеллекта в нейрорадиологии острого ишемического инсульта. Лучевая диагностика и терапия. 2021;12(2):30-5 [Andropova РL, Gavrilov PV, Savintseva ZhI, et al. Аpplication of artificial intelligence systems in neuroradiology of acute ischemic stroke. Diagnostic radiology and radiotherapy. 2021;12(2):30-5 (in Russian)].
- Петухова Н.В., Фархадов М.П., Замерград М.В., Грачев С.П. Цифровые технологии в диагностике и лечении неврологических заболеваний. Неврология, нейропсихиатрия, психосоматика. 2019;11(4):104-10 [Petukhova NV, Farkhadov MP, Zamegrad MV, Grachev SP. Digital technologies in the diagnosis and treatment of neurological diseases. Neurology, Neuropsychiatry, Psychosomatics. 2019;11(4):104-10 (in Russian)].
- Десять ведущих причин смерти в мире. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed: 17.07.2024.
- Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2019;130(4):1080-97. doi: 10.3171/2017.10.JNS17352
- Hampel H, Elhage A, Cho M, et al. Amyloid-related imaging abnormalities (ARIA): radiological, biological and clinical characteristics. Brain. 2023;146(11):4414-24. doi: 10.1093/brain/awad188
- Sima DM, Phan TV, Van Eyndhoven S, et al. Artificial Intelligence Assistive Software Tool for Automated Detection and Quantification of Amyloid-Related Imaging Abnormalities. JAMA Netw Open. 2024;7(2):e2355800. doi: 10.1001/jamanetworkopen.2023.55800
- Еpilepsy. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/epilepsy. Accessed: 17.01.2025.
- Sheehy CK, Bensinger ES, Romeo A, et al. Fixational microsaccades: A quantitative and objective measure of disability in multiple sclerosis. Multiple Sclerosis Journal. 2020;26(3):343-53. doi: 10.1177/1352458519894712
- Щеглова Л.В., Савинова А.В., Камышанская И.Г., и др. Использование искусственного интеллекта в диагностике острых нарушений мозгового кровообращения (обзор литературы). Медицина: теория и практика. 2023;8(4):272-8 [Shcheglova LV, Savinova AV, Kamyshanskaya IG, et al. Ispolzovanie iskusstvennogo intellekta v diagnostike ostrykh narushenii mozgovogo krovoobrashcheniia (obzor literatury). Meditsina: teoriya i praktika. 2023;8(4):272-8 (in Russian)].
- Neri E, Aghakhanyan G, Zerunian M, et al. Explainable AI in radiology: a white paper of the Italian Society of Medical and Interventional Radiology. Radiologia Medica. 2023;128(6):755-64. doi: 10.1007/s11547-023-01634-5
- Казакова В.А., Тюлякова С.А., Шивилов Е.В., и др. Правовые основы применения технологий искусственного интеллекта в лучевой диагностике. Радиология – практика. 2023;2:63-77 [Kazakova VA, Tyulyakova SA, Shivilov EV, et al. Legal Basis for the Use of Artificial Intelligence Technologies in Radiation Diagnostics. Radiology – Practice. 2023;(2):63-77 (in Russian)].
- О развитии искусственного интеллекта в Российской Федерации. Указ Президента РФ от 10.10.2019 №490, ред. от 15.02.2024. Режим доступа: http://www.kremlin.ru/acts/bank/44731. Ссылка активна на 19.09.2024 [On the development of artificial intelligence in the Russian Federation. Decree of the President of the Russian Federation of 10.10.2019 No. 490 as amended on 15.02.2024. Available at: http://www.kremlin.ru/acts/bank/44731 Accessed: 19.09.2024 (in Russian)].
- Najjar R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics (Basel). 2023;13(17):2760. doi: 10.3390/diagnostics13172760
Supplementary files
