LOX-1 as a biological marker and therapeutic target in cardiovascular pathology (literature review)
- Authors: Alieva A.M.1, Baykova I.E.1, Reznik E.V.1, Teplova N.V.1, Valiev R.K.2, Gyzyeva M.K.3, Sultangalieva A.B.1, Kotikova I.A.1, Novikova N.A.4, Korvyakov S.A.4, Nikitin I.G.1
-
Affiliations:
- Pirogov Russian National Research Medical University
- Loginov Moscow Clinical Scientific Center
- Pyatigorsk Medical and Pharmaceutical Institute – a branch of the Volgograd State Medical University
- Petrovsky National Research Centre of Surgery
- Issue: Vol 26, No 10 (2024): CARDIOLOGY AND NEPHROLOGY
- Pages: 666-673
- Section: Articles
- URL: https://ogarev-online.ru/2075-1753/article/view/271603
- DOI: https://doi.org/10.26442/20751753.2024.10.202945
- ID: 271603
Cite item
Full Text
Abstract
Cardiovascular diseases (CVD) are a global medical, social and economic problem. Currently, the search and study of new biological markers that can provide early diagnosis of CVD, serve as a laboratory tool for evaluating the effectiveness of treatment or be used as prognostic markers and criteria for risk stratification continues. The interest of scientists is focused on the study of the type 1 lectin-like receptor for oxidized low-density lipoproteins (LOX-1) as a diagnostic and prognostic marker in CVD. The presented literature review highlights the potential significance of the LOX-1 study as a diagnostic and prognostic laboratory tool in CVD. It is expected that future clinical and experimental studies will confirm the possibility of using LOX-1 as an additional non-invasive tool for diagnosis and prognosis assessment in patients with CVD. Modulation of LOX-1 levels and expression using pharmacological drugs may prove to be a promising direction for the treatment of CVD.
Full Text
##article.viewOnOriginalSite##About the authors
Amina M. Alieva
Pirogov Russian National Research Medical University
Author for correspondence.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-code: 2749-6427
Cand. Sci. (Med.)
Russian Federation, MoscowIrina E. Baykova
Pirogov Russian National Research Medical University
Email: 1498553@mail.ru
ORCID iD: 0000-0003-0886-6290
SPIN-code: 3054-8884
Cand. Sci. (Med.)
Russian Federation, MoscowElena V. Reznik
Pirogov Russian National Research Medical University
Email: elenaresnik@gmail.com
ORCID iD: 0000-0001-7479-418X
SPIN-code: 3494-9080
D. Sci. (Med.), Prof.
Russian Federation, MoscowNatalia V. Teplova
Pirogov Russian National Research Medical University
Email: teplova.nv@yandex.ru
ORCID iD: 0000-0002-7181-4680
SPIN-code: 9056-1948
D. Sci. (Med.), Prof.
Russian Federation, MoscowRamiz K. Valiev
Loginov Moscow Clinical Scientific Center
Email: radiosurgery@bk.ru
ORCID iD: 0000-0003-1613-3716
SPIN-code: 2855-2867
Cand. Sci. (Med.)
Russian Federation, MoscowMalika Kh. Gyzyeva
Pyatigorsk Medical and Pharmaceutical Institute – a branch of the Volgograd State Medical University
Email: amisha_alieva@mail.ru
ORCID iD: 0009-0008-9105-1191
Student
Russian Federation, PyatigorskAlbina B. Sultangalieva
Pirogov Russian National Research Medical University
Email: albina_sult_2002@mail.ru
ORCID iD: 0009-0008-4194-8486
Student
Russian Federation, MoscowIrina A. Kotikova
Pirogov Russian National Research Medical University
Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499
SPIN-code: 1423-7300
Student
Russian Federation, MoscowNatalia A. Novikova
Petrovsky National Research Centre of Surgery
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0002-3639-270X
Cand. Sci. (Med.)
Russian Federation, MoscowSergey A. Korvyakov
Petrovsky National Research Centre of Surgery
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0002-0237-524X
Cand. Sci. (Med.)
Russian Federation, MoscowIgor G. Nikitin
Pirogov Russian National Research Medical University
Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
D. Sci. (Med.), Prof.
Russian Federation, MoscowReferences
- Roth GA, Mensah GA, Johnson CO, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982-3021. doi: 10.1016/j.jacc.2020.11.010
- Deng P, Fu Y, Chen M, et al. Temporal trends in inequalities of the burden of cardiovascular disease across 186 countries and territories. Int J Equity Health. 2023;22(1):164. doi: 10.1186/s12939-023-01988-2
- Silva S, Fatumo S, Nitsch D. Mendelian randomization studies on coronary artery disease: a systematic review and meta-analysis. Syst Rev. 2024;13(1):29. doi: 10.1186/s13643-023-02442-8
- Алиева А.М., Теплова Н.В., Батов М.А., и др. Пентраксин-3 – перспективный биологический маркер при сердечной недостаточности: литературный обзор. Consilium Medicum. 2022;24(1):53-9 [Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3 – a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53-9 (in Russian)]. doi: 10.26442/20751753.2022.1.201382
- Алиева А.М., Резник Е.В., Пинчук Т.В., и др. Фактор дифференцировки роста-15 (GDF-15) как биологический маркер при сердечной недостаточности. Архивъ внутренней медицины. 2023;13(1):14-23 [Alieva AM, Reznik EV, Pinchuk TV, et al. Growth Differentiation Factor-15 (GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14-23 (in Russian)]. doi: 10.20514/2226-6704-2023-13-1-14-23
- Алиева А.М., Теплова Н.В., Кисляков В.А., и др. Биомаркеры в кардиологии: микроРНК и сердечная недостаточность. Терапия. 2022;1:60-70 [Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkery v kardiologii: mikroRNK i serdechnaya nedostatochnost'. Terapiya. 2022;1:60-70 (in Russian)]. doi: 10.18565/therapy.2022.1.60-70
- Lubrano V, Balzan S, Papa A. LOX-1 variants modulate the severity of cardiovascular disease: state of the art and future directions. Mol Cell Biochem. Epub 2023 Oct 3. doi: 10.1007/s11010-023-04859-0
- Sánchez-León ME, Loaeza-Reyes KJ, Matias-Cervantes CA, et al. LOX-1 in Cardiovascular Disease: A Comprehensive Molecular and Clinical Review. Int J Mol Sci. 2024;25(10):5276. doi: 10.3390/ijms25105276
- Bagheri B, Khatibiyan Feyzabadi Z, Nouri A, et al. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediators Inflamm. 2024;2024:5830491. doi: 10.1155/2024/5830491
- Truthe S, Klassert TE, Schmelz S, et al. Role of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Inflammation and Pathogen-Associated Interactions. J Innate Immun. 2024;16(1):105-32. doi: 10.1159/000535793
- Pyrpyris N, Dimitriadis K, Beneki E, et al. LOX-1 Receptor: A Diagnostic Tool and Therapeutic Target in Atherogenesis. Curr Probl Cardiol. 2024;49(1 Pt. C):102117. doi: 10.1016/j.cpcardiol.2023.102117
- Munno M, Mallia A, Greco A, et al. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants (Basel). 2024;13(5):583. doi: 10.3390/antiox13050583
- Barreto J, Karathanasis SK, Remaley A, et al. Role of LOX-1 (Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1) as a Cardiovascular Risk Predictor: Mechanistic Insight and Potential Clinical Use. Arterioscler Thromb Vasc Biol. 2021;41(1):153-66. doi: 10.1161/ATVBAHA.120.315421
- Inoue N, Okamura T, Kokubo Y, et al. LOX index, a novel predictive biochemical marker for coronary heart disease and stroke. Clin Chem. 2010;56(4):550-8. doi: 10.1373/clinchem.2009.140707
- Markstad H, Edsfeldt A, Yao Mattison I, et al. High Levels of Soluble Lectinlike Oxidized Low-Density Lipoprotein Receptor-1 Are Associated With Carotid Plaque Inflammation and Increased Risk of Ischemic Stroke. J Am Heart Assoc. 2019;8(4):e009874. doi: 10.1161/JAHA.118.009874
- Skarpengland T, Skjelland M, Kong XY, et al. Increased Levels of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Ischemic Stroke and Transient Ischemic Attack. J Am Heart Assoc. 2018;7(2):e006479. doi: 10.1161/JAHA.117.006479
- Otsuki T, Maeda S, Mukai J, et al. Association between plasma sLOX-1 concentration and arterial stiffness in middle-aged and older individuals. J Clin Biochem Nutr. 2015;57(2):151-5. doi: 10.3164/jcbn.15-27
- Zhang Q, Chu Y, Jin G, et al. Association Between LOX-1, LAL, and ACAT1 Gene Single Nucleotide Polymorphisms and Carotid Plaque in a Northern Chinese Population. Genet Test Mol Biomarkers. 2020;24(3):138-44. doi: 10.1089/gtmb.2019.0209
- Salehipour P, Rezagholizadeh F, Mahdiannasser M, et al. Association of OLR1 gene polymorphisms with the risk of coronary artery disease: A systematic review and meta-analysis. Heart Lung. 2021;50(2):334-43. doi: 10.1016/j.hrtlng.2021.01.015
- Xu X, Hou X, Liang Y, et al. The gene polymorphism of LOX1 predicts the incidence of LVH in patients with essential hypertension. Cell Physiol Biochem. 2014;33(1):88-96. doi: 10.1159/000356652
- Sheikh MSA. Circulatory soluble LOX-1 is a novel predictor for coronary artery disease patients. Cardiovasc J Afr. 2023;34(2):104-8. doi: 10.5830/CVJA-2022-038
- Md Sayed AS, Zhao Z, Guo L, et al. Serum lectin-like oxidized-low density lipoprotein receptor-1 and adiponectin levels are associated with coronary artery disease accompanied with metabolic syndrome. Iran Red Crescent Med J. 2014;16(8):e12106. doi: 10.5812/ircmj.12106
- Kobayashi N, Hata N, Kume N, et al. Soluble lectin-like oxidized low-density lipoprotein receptor-1 as an early biomarker for ST elevation myocardial infarction: time-dependent comparison with other biomarkers: time-dependent comparison with other biomarkers. Circ J. 2011;75(6):1433-9. doi: 10.1253/circj. cj-10-0913
- Hussein RA, Abdul-Rasheed OF, Basheer M. Evaluation of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) and sLOX-1/oxidized LDL ratio as novel biomarkers of acute coronary syndrome. Acta Biochim Pol. 2022;69(2):309-14. doi: 10.18388/abp.2020_5735
- Zhao ZW, Xu YW, Li SM, et al. Baseline Serum sLOX-1 Concentrations Are Associated with 2-Year Major Adverse Cardiovascular and Cerebrovascular Events in Patients after Percutaneous Coronary Intervention. Dis Markers. 2019;2019:4925767. doi: 10.1155/2019/4925767
- Besli F, Gullulu S, Sag S, et al. The relationship between serum lectin-like oxidized LDL receptor-1 levels and systolic heart failure. Acta Cardiol. 2016;71(2):185-90. doi: 10.2143/AC.71.2.3141848
- Stankova TR, Delcheva GT, Maneva AI, et al. Serum Levels of Carbamylated LDL, Nitrotyrosine and Soluble Lectin-like Oxidized Low-density Lipoprotein Receptor-1 in Poorly Controlled Type 2 Diabetes Mellitus. Folia Med (Plovdiv). 2019;61(3):419-25. doi: 10.3897/folmed.61.e39343
- Lee AS, Wang YC, Chang SS, et al. Detection of a High Ratio of Soluble to Membrane-Bound LOX-1 in Aspirated Coronary Thrombi from Patients With ST-Segment-Elevation Myocardial Infarction. J Am Heart Assoc. 2020;9(2):e014008. doi: 10.1161/JAHA.119.014008
- Li D, Li B, Yang L, et al. Human cytomegalovirus infection is correlated with atherosclerotic plaque vulnerability in carotid artery. J Gene Med. 2020;22(10):e3236. doi: 10.1002/jgm.3236
- Dogan I, Dogan T, Yetim M, et al. Relation of Serum ADMA, Apelin-13 and LOX-1 Levels with Inflammatory and Echocardiographic Parameters in Hemodialysis Patients. Ther Apher Dial. 2018;22(2):109-17. doi: 10.1111/1744-9987.12613
- Taskin HE, Kocael A, Kocael P, et al. Original contribution: sleeve gastrectomy reduces soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) levels in patients with morbid obesity. Surg Endosc. 2022;36(4):2643-52. doi: 10.1007/s00464-021-08989-8
- Vavere AL, Sinsakul M, Ongstad EL, et al. Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1 Inhibition in Type 2 Diabetes: Phase 1 Results. J Am Heart Assoc. 2023;12(3):e027540. doi: 10.1161/JAHA.122.027540
- Sui D, Yu H. Protective roles of apremilast via Sirtuin 1 in atherosclerosis. Bioengineered. 2022;13(5):13872-81. doi: 10.1080/21655979.2022.2085390
- Yang T, Minami M, Yoshida K, et al. Niclosamide downregulates LOX-1 expression in mouse vascular smooth muscle cells and changes the composition of atherosclerotic plaques in ApoE-/- mice. Heart Vessels. 2022;37(3):517-27. doi: 10.1007/s00380-021-01983-z
- Liu H, Xu S, Li G, et al. Sarpogrelate and rosuvastatin synergistically ameliorate aortic damage induced by hyperlipidemia in apolipoprotein E-deficient mice. Exp Ther Med. 2020;20(6):170. doi: 10.3892/etm.2020.9300
- Zhou S, Li Z, Liu P, et al. Donepezil Prevents ox-LDL-Induced Attachment of THP-1 Monocytes to Human Aortic Endothelial Cells (HAECs). Chem Res Toxicol. 2020;33(4):975-81. doi: 10.1021/acs.chemrestox.9b00509
- Togami K, Zhan X, Ishizawa K, et al. Development of LOX-1 Antibody Modified Immuno-liposomes as Drug Carriers to Macrophages in Atherosclerotic Lesions. Pharmazie. 2023;78(8):113-6. doi: 10.1691/ph.2023.3004
- Wang Z, Chen X, Liu J, et al. Inclisiran inhibits oxidized low-density lipoprotein-induced foam cell formation in Raw264.7 macrophages via activating the PPARγ pathway. Autoimmunity. 2022;55(4):223-32. doi: 10.1080/08916934.2022.2051142
- Zhang L, Cheng L, Wang Q, et al. Atorvastatin protects cardiomyocytes from oxidative stress by inhibiting LOX-1 expression and cardiomyocyte apoptosis. Acta Biochim Biophys Sin (Shanghai). 2015;47(3):174-82. doi: 10.1093/abbs/gmu131
- Biocca S, Iacovelli F, Matarazzo S, et al. Molecular mechanism of statin-mediated LOX-1 inhibition. Cell Cycle. 2015;14(10):1583-95. doi: 10.1080/15384101.2015.1026486
- Xiong Q, Wang Z, Yu Y, et al. Hydrogen sulfide stabilizes atherosclerotic plaques in apolipoprotein E knockout mice. Pharmacol Res. 2019;144:90-8. doi: 10.1016/j.phrs.2019.04.006
- Yu Z, Peng Q, Li S, et al. Myriocin and d-PDMP ameliorate atherosclerosis in ApoE-/- mice via reducing lipid uptake and vascular inflammation. Clin Sci (Lond). 2020;134(5):439-58. doi: 10.1042/CS20191028
- Yan L, Jia Q, Cao H, et al. Fisetin ameliorates atherosclerosis by regulating PCSK9 and LOX-1 in apoE-/- mice. Exp Ther Med. 2021;21(1):25. doi: 10.3892/etm.2020.9457
- Chiu TH, Ku CW, Ho TJ, et al. Schisanhenol ameliorates oxLDL-caused endothelial dysfunction by inhibiting LOX-1 signaling. Environ Toxicol. 2023;38(7):1589-96. doi: 10.1002/tox.23788
- Lee HS, Lee MJ, Kim H, et al. Curcumin inhibits TNF-alpha-induced lectin-like oxidised LDL receptor-1 (LOX-1) expression and suppresses the inflammatory response in human umbilical vein endothelial cells (HUVECs) by an antioxidant mechanism. J Enzyme Inhib Med Chem. 2010;25(5):720-9. doi: 10.3109/14756360903555274
- Luo R, Zhao L, Li S, et al. Curcumin Alleviates Palmitic Acid-Induced LOX-1 Upregulation by Suppressing Endoplasmic Reticulum Stress in HUVECs. Biomed Res Int. 2021;2021:9983725. doi: 10.1155/2021/9983725
- Xu S, Liu Z, Huang Y, et al. Tanshinone II-A inhibits oxidized LDL-induced LOX-1 expression in macrophages by reducing intracellular superoxide radical generation and NF-kappaB activation. Transl Res. 2012;160:114-24. doi: 10.1016/j.trsl.2012.01.008
- Wen J, Chang Y, Huo S, et al. Tanshinone IIA attenuates atherosclerosis via inhibiting NLRP3 inflammasome activation. Aging. 2020;13:910-32. doi: 10.18632/aging.202202
- Feng Z, Yang X, Zhang L, et al. Ginkgolide B ameliorates oxidized low-density lipoprotein-induced endothelial dysfunction via modulating Lectin-like ox-LDL-receptor-1 and NADPH oxidase 4 expression and inflammatory cascades. Phytother Res. 2018;32(12):2417-27. doi: 10.1002/ptr.6177
- Wang G, Liu Z, Li M, et al. Ginkgolide B Mediated Alleviation of Inflammatory Cascades and Altered Lipid Metabolism in HUVECs via Targeting PCSK-9 Expression and Functionality. Biomed Res Int. 2019;2019:7284767. doi: 10.1155/2019/7284767
- Xu Q, Li YC, Du C, et al. Effects of Apigenin on the Expression of LOX-1, Bcl-2, and Bax in Hyperlipidemia Rats. Chem Biodivers. 2021;18(8):e2100049. doi: 10.1002/cbdv.202100049
- Bai X, Wang S, Shu L, et al. Hawthorn leaf flavonoids alleviate the deterioration of atherosclerosis by inhibiting SCAP-SREBP2-LDLR pathway through sPLA2-IIA signaling in macrophages in mice. J Ethnopharmacol. 2024;327:118006. doi: 10.1016/j.jep.2024.118006
- Ding Y, Feng Y, Zhu W, et al. [Gly14]-Humanin Prevents Lipid Deposition and Endothelial Cell Apoptosis in a Lectin-like Oxidized Low-density Lipoprotein Receptor-1-Dependent Manner. Lipids. 2019;54(11-12):697-705. doi: 10.1002/lipd.12195
- Yu J, Zhou L, Song H, et al. (-)-Epicatechin gallate blocked cellular foam formation in atherosclerosis by modulating CD36 expression in vitro and in vivo. Food Funct. 2023;14(5):2444-58. doi: 10.1039/d2fo03218j
- Li Q, Liu X, Zhang X, et al. Terpene Lactucopicrin Limits Macrophage Foam Cell Formation by a Reduction of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Lipid Rafts. Mol Nutr Food Res. 2022;66(4):e2100905. doi: 10.1002/mnfr.202100905
- Im YS, Gwon MH, Yun JM. Protective effects of phenethyl isothiocyanate on foam cell formation by combined treatment of oxidized low-density lipoprotein and lipopolysaccharide in THP-1 macrophage. Food Sci Nutr. 2021;9(6):3269-79. doi: 10.1002/fsn3.2293
- Pengnet S, Prommaouan S, Sumarithum P, et al. Naringin Reverses High-Cholesterol Diet-Induced Vascular Dysfunction and Oxidative Stress in Rats via Regulating LOX-1 and NADPH Oxidase Subunit Expression. Biomed Res Int. 2019;2019:3708497. doi: 10.1155/2019/3708497
- Manogaran M, Vuanghao L, Mohamed R. Gynura procumbens ethanol extract and its fractions inhibit macrophage derived foam cell formation. J Ethnopharmacol. 2020;249:112410. doi: 10.1016/j.jep.2019.112410
Supplementary files
