Known and unknown hymecromone. A review
- Authors: Plotnikova E.Y.1
-
Affiliations:
- Kemerovo State Medical University
- Issue: Vol 26, No 5 (2024): Гастроэнтерология
- Pages: 324-330
- Section: Articles
- URL: https://ogarev-online.ru/2075-1753/article/view/263638
- DOI: https://doi.org/10.26442/20751753.2024.5.202877
- ID: 263638
Cite item
Full Text
Abstract
Hymecromone (4-MU) is a recognized agent currently used in clinical practice. Since 1960, hymecromone has been used in many countries as a choleretic and cholespasmolytic, a drug approved for use in humans with biliary tract disorders. The review presents both traditional European and Russian studies of the selective antispasmodic and choleretic properties of hymecromone, due to which hymecromone is the drug of choice for the treatment of biliary tract diseases, as well as new fundamental and clinical studies of numerous pleiotropic effects of 4-MU associated with inhibition of hyaluronic acid and many other properties of this exciting molecule. These include antibacterial, antiviral, and nonspecific anti-inflammatory effects. Positive results have been demonstrated in carbohydrate and lipid metabolism disorders, autoimmune diseases, as well as liver, heart, and kidney diseases. Numerous in vitro and in vivo studies have been presented in pancreatic, prostate, skin, esophagus, breast, liver, ovary, bone cancers, metastatic lesions, leukemia, autoimmune and inflammatory diseases. Hymecromone is indicated not only as a choleretic and cholespasmolytic but also as a choleseptic in cholangitis and chronic cholecystitis, including opisthorchiasis, which does not disagree with its label. Odecromone® (hymecromone, tablets 200 mg) is available on the Russian market; it replaced the originator drug and is its fully equivalent generic.
Full Text
##article.viewOnOriginalSite##About the authors
Ekaterina Yu. Plotnikova
Kemerovo State Medical University
Author for correspondence.
Email: eka-pl@rambler.ru
ORCID iD: 0000-0002-6150-1808
D. Sci. (Med.)
Russian Federation, KemerovoReferences
- ChemBK. Available at: https://www.chembk.com/en/chem/7-Hydroxy-4-methyl-2H-1-benzopyran-2-one. Accessed: 26.06.24.
- Garrett ER, Venitz J. Comparisons of detections, stabilities, and kinetics of degradation of hymecromone and its glucuronide and sulfate metabolites. J Pharm Sci. 1994;83(1):115-6. doi: 10.1002/jps.2600830128
- Garrett ER, Venitz J, Eberst K, Cerda JJ. Pharmacokinetics and bioavailabilities of hymecromone in human volunteers. Biopharm Drug Dispos. 1993;14(1):13-39. doi: 10.1002/bdd.2510140103
- Nagy N, Kuipers HF, Frymoyer AR, et al. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front Immunol. 2015;6:123. doi: 10.3389/fimmu.2015.00123
- Hoffmann RM, Schwarz G, Pohl C, et al. Gallensäure-unabhängige Wirkung von Hymecromon auf die Gallesekretion und die Motilität der Gallenwege [Bile acid-independent effect of hymecromone on bile secretion and common bile duct motility]. Dtsch Med Wochenschr. 2005;130(34–35):1938-43 [Article in German]. doi: 10.1055/s-2005-872606
- Минушкин О.Н. Одестон в лечении больных билиарной дисфункцией. Фарматека. 2010;(2):61-5 [Minushkin ON. Odeston v lechenii bol'nykh biliarnoi disfunktsiei. Farmateka. 2010;(2):61-5 (in Russian)].
- Яковенко Э.П., Агафонова Н.А., Кальнова С.Б. Одестон в терапии заболеваний билиарного тракта. Практикующий врач. 2001;19(1):30-2 [Iakovenko EP, Agafonova NA, Kal'nova SB. Odeston v terapii zabolevanii biliarnogo trakta. Praktikuiushchii Vrach. 2001;19(1):30-2 (in Russian)].
- Максимов В.А., Бунтин С.Е., Бунтина В.Г., и др. О влиянии гимекромона на моторную функцию билиарного тракта у больных с постхолецистэктомическим синдромом. Лечащий врач. 2008;(2):76-7 [Maksimov VA, Buntin SE, Buntina VG, et al. O vliianii gimekromona na motornuiu funktsiiu biliarnogo trakta u bol'nykh s postkholetsistektomicheskim sindromom. Lechashchii Vrach. 2008;(2):76-7 (in Russian)].
- Барышникова Н.B., Соусова Я.В. Эффективность монотерапии Гимекромоном-СЗ в лечении пациентов с различной патологией билиарного тракта. Медицинский алфавит. 2021;(40):14-20 [Baryshnikova NV, Sousova YaV. Effectiveness of Hymecromone monotherapy in treatment of patients with various pathologies of biliary tract. Medical Alphabet. 2021;(40):14-20 (in Russian)]. doi: 10.33667/2078-5631-2021-40-14-20
- Никитин И.Г., Саликов А.В., Федоров И.Г., Ильченко Л.Ю. Монотерапия гимекромоном пациентов с патологией билиарного тракта: клиническая эффективность и профиль безопасности. Лечебное дело. 2023;(3):34-40 [Nikitin IG, Salikov AV, Fedorov IG, Ilchenko LYu. Hymecromone Monotherapy in Patients with Biliary Tract Disorders: Clinical Efficacy and Safety Profile. Lechebnoe Delo. 2023;(3):34-40 (in Russian)].
- Бордин Д.С., Дубцова Е.А., Селезнева Э.Я., и др. Эффективность и безопасность различных доз гимекромона у больных, перенесших холецистэктомию. Эффективная фармакотерапия. 2021;17(39):34-8 [Bordin DS, Dubtsova EA, Selezneva EYa, et al. Efficacy and Safety of Hymecromone Various Doses in Patients Who Have Undergone Cholecystectomy. Effektivnaia Farmakoterapiia. 2021;17(39):34-8 (in Russian)]. doi: 10.33978/2307-3586-2021-17-39-34-38
- Поленов А.М., Погромов А.П. Гимекромон (одестон) в терапии больных с постхолецистэктомической дисфункцией сфинктера Одди. Экспериментальная и клиническая гастроэнтерология. 2003;(5):163-4 [Polenov AM, Pogromov AP. Gimekromon (odeston) v terapii bol'nykh s postkholetsistektomicheskoi disfunktsiei sfinktera Oddi. Eksperimental'naia i Klinicheskaia Gastroenterologiia. 2003;(5):163-4 (in Russian)].
- Охлобыстин А.В., Татаркина М.А., Охлобыстина О.З., и др. Эффективность применения препарата гимекромон при билиарном панкреатите. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019;29(5):26-35 [Okhlobystin AV, Tatarkina MA, Okhlobystina OZ, et al. Hymecromone Efficacy in the Treatment of Biliary Pancreatitis. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019;29(5):26-35 (in Russian)]. doi: 10.22416/1382-4376-2019-29-5-26-35
- Максимов В.А., Бунтин С.Е., Бунтина В.Г. Эффективность Одестона в лечении больных хроническим панкреатитом. Фарматека. 2009;13:72-4 [Maksimov VA, Buntin SE, Buntina VG. Effektivnost' Odestona v lechenii bol'nykh khronicheskim pankreatitom. Farmateka. 2009;13:72-4 (in Russian)].
- Goth A. The antibacterial properties of dicumarol. Science. 1945;101(2624):383. doi: 10.1126/science.101.2624.383
- Melliou E, Magiatis P, Mitaku S, et al. Natural and synthetic 2,2-dimethylpyranocoumarins with antibacterial activity. J Nat Prod. 2005;68(1):78-82. doi: 10.1021/np0497447
- Kawase M, Varu B, Shah A, et al. Antimicrobial activity of new coumarin derivatives. Arzneimittelforschung. 2001;51(1):67-71. doi: 10.1055/s-0031-1300004
- El-Attar MS, Sadeek SA, Abd El-Hamid SM, Elshafie HS. Spectroscopic Analyses and Antimicrobial Activity of Novel Ciprofloxacin and 7-Hydroxy-4-methylcoumarin, the Plant-Based Natural Benzopyrone Derivative. Int J Mol Sci. 2022;23(14):8019. doi: 10.3390/ijms23148019
- Singh LK, Priyanka, Singh V, Katiyar D. Design, synthesis and biological evaluation of some new coumarin derivatives as potential antimicrobial agents. Med Chem. 2015;11(2):128-34. doi: 10.2174/1573406410666140902110452
- McKallip RJ, Ban H, Uchakina ON. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation. Inflammation. 2015;38(3):1250-9. doi: 10.1007/s10753-014-0092-y
- Barnes HW, Demirdjian S, Haddock NL, et al. Hyaluronan in the pathogenesis of acute and post-acute COVID-19 infection. Matrix Biol. 2023;116:49-66. doi: 10.1016/j.matbio.2023.02.001
- McKallip RJ, Hagele HF, Uchakina ON. Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses SEB-induced lung inflammation. Toxins (Basel). 2013;5(10):1814-26. doi: 10.3390/toxins5101814
- Arai E, Nishida Y, Wasa J, et al. Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo. Br J Cancer. 2011;105(12):1839-49. doi: 10.1038/bjc.2011.459
- Collum SD, Chen NY, Hernandez AM, et al. Inhibition of hyaluronan synthesis attenuates pulmonary hypertension associated with lung fibrosis. Br J Pharmacol. 2017;174(19):3284-301. doi: 10.1111/bph.13947
- Collum SD, Molina JG, Hanmandlu A, et al. Adenosine and hyaluronan promote lung fibrosis and pulmonary hypertension in combined pulmonary fibrosis and emphysema. Dis Model Mech. 2019;12(5):dmm038711. doi: 10.1242/dmm.038711
- Yang S, Ling Y, Zhao F, et al. Hymecromone: a clinical prescription hyaluronan inhibitor for efficiently blocking COVID-19 progression. Signal Transduct Target Ther. 2022;7(1):91. doi: 10.1038/s41392-022-00952-w
- Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;91(1):221-64. doi: 10.1152/physrev.00052.2009
- Itano N, Atsumi F, Sawai T, et al. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc Natl Acad Sci U S A. 2002;99(6):3609-14. doi: 10.1073/pnas.052026799
- Ruppert SM, Hawn TR, Arrigoni A, et al. Tissue integrity signals communicated by high-molecular weight hyaluronan and the resolution of inflammation. Immunol Res. 2014;58(2-3):186-92. doi: 10.1007/s12026-014-8495-2
- Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85(8):699-715. doi: 10.1016/j.ejcb.2006.05.009
- Laurent TC, Laurent UB, Fraser JR. The structure and function of hyaluronan: An overview. Immunol Cell Biol. 1996;74(2):A1-7. doi: 10.1038/icb.1996.32
- Scott JE. Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J. 1992;6(9):2639-45.
- Tasanarong A, Khositseth S, Thitiarchakul S. The mechanism of increased vascular permeability in renal ischemic reperfusion injury: potential role of angiopoietin-1 and hyaluronan. J Med Assoc Thai. 2009;92(9):1150-8.
- Khan AI, Kerfoot SM, Heit B, et al. Role of CD44 and hyaluronan in neutrophil recruitment. J Immunol. 2004;173(12):7594-601. doi: 10.4049/jimmunol.173.12.7594
- Evanko SP, Potter-Perigo S, Bollyky PL, et al. Hyaluronan and versican in the control of human T-lymphocyte adhesion and migration. Matrix Biol. 2012;31(2):90-100. doi: 10.1016/j.matbio.2011.10.004
- Powell JD, Horton MR. Threat matrix: low-molecular-weight hyaluronan (HA) as a danger signal. Immunol Res. 2005;31(3):207-18. doi: 10.1385/IR:31:3:207
- Tesar BM, Jiang D, Liang J, et al. The role of hyaluronan degradation products as innate alloimmune agonists. Am J Transplant. 2006;6(11):2622-35. doi: 10.1111/j.1600-6143.2006.01537.x
- Termeer C, Benedix F, Sleeman J, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195(1):99-111. doi: 10.1084/jem.20001858
- Bollyky PL, Wu RP, Falk BA, et al. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proc Natl Acad Sci U S A. 2011;108(19):7938-43. doi: 10.1073/pnas.1017360108
- Horton MR, Burdick MD, Strieter RM, et al. Regulation of hyaluronan-induced chemokine gene expression by IL-10 and IFN-gamma in mouse macrophages. J Immunol. 1998;160(6):3023-30.
- Scheibner KA, Lutz MA, Boodoo S, et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177(2):1272-81. doi: 10.4049/jimmunol.177.2.1272
- Zheng L, Riehl TE, Stenson WF. Regulation of colonic epithelial repair in mice by Toll-like receptors and hyaluronic acid. Gastroenterology. 2009;137(6):2041-51. doi: 10.1053/j.gastro.2009.08.055
- Gao F, Liu Y, He Y, et al. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol. 2010;29(2):107-16. doi: 10.1016/j.matbio.2009.11.002
- Gao F, Koenitzer JR, Tobolewski JM, et al. Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem. 2008;283(10):6058-66. doi: 10.1074/jbc
- Rilla K, Pasonen-Seppänen S, Rieppo J, et al. The hyaluronan synthesis inhibitor 4-methylumbelliferone prevents keratinocyte activation and epidermal hyperproliferation induced by epidermal growth factor. J Invest Dermatol. 2004;123(4):708-14. doi: 10.1111/j.0022-202X.2004.23409.x
- Kultti A, Pasonen-Seppänen S, Jauhiainen M, et al. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp Cell Res. 2009;315(11):1914-23. doi: 10.1016/j.yexcr.2009.03.002
- Yoshihara S, Kon A, Kudo D, et al. A hyaluronan synthase suppressor, 4-methylumbelliferone, inhibits liver metastasis of melanoma cells. FEBS Lett. 2005;579(12):2722-6. doi: 10.1016/j.febslet.2005.03.079
- Clarkin CE, Allen S, Wheeler-Jones CP, et al. Reduced chondrogenic matrix accumulation by 4-methylumbelliferone reveals the potential for selective targeting of UDP-glucose dehydrogenase. Matrix Biol. 2011;30(3):163-8. doi: 10.1016/j.matbio.2011.01.002
- Nakazawa H, Yoshihara S, Kudo D, et al. 4-methylumbelliferone, a hyaluronan synthase suppressor, enhances the anticancer activity of gemcitabine in human pancreatic cancer cells. Cancer Chemother Pharmacol. 2006;57(2):165-70. doi: 10.1007/s00280-005-0016-5
- Saito T, Tamura D, Nakamura T, et al. 4-methylumbelliferone leads to growth arrest and apoptosis in canine mammary tumor cells. Oncol Rep. 2013;29(1):335-42. doi: 10.3892/or.2012.2100
- García-Vilas JA, Quesada AR, Medina MÁ. 4-methylumbelliferone inhibits angiogenesis in vitro and in vivo. J Agric Food Chem. 2013;61(17):4063-71. doi: 10.1021/jf303062h
- Vigetti D, Rizzi M, Viola M, et al. The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells. Glycobiology. 2009;19(5):537-46. doi: 10.1093/glycob/cwp022
- Saga R, Matsuya Y, Takahashi R, et al. 4-Methylumbelliferone administration enhances radiosensitivity of human fibrosarcoma by intercellular communication. Sci Rep. 2021;11(1):8258. doi: 10.1038/s41598-021-87850-3
- Díaz M, Pibuel M, Paglilla N, et al. 4-Methylumbelliferone induces antitumor effects independently of hyaluronan synthesis inhibition in human acute leukemia cell lines. Life Sci. 2021;287:120065. doi: 10.1016/j.lfs.2021.120065
- Weiz G, Molejon MI, Malvicini M, et al. Glycosylated 4-methylumbelliferone as a targeted therapy for hepatocellular carcinoma. Liver Int. 2022;42(2):444-57. doi: 10.1111/liv.15084
- Piccioni F, Fiore E, Bayo J, et al. 4-methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis. Glycobiology. 2015;25(8):825-35. doi: 10.1093/glycob/cwv023
- Rodríguez MM, Onorato A, Cantero MJ, et al. 4-methylumbelliferone-mediated polarization of M1 macrophages correlate with decreased hepatocellular carcinoma aggressiveness in mice. Sci Rep. 2021;11(1):6310. doi: 10.1038/s41598-021-85491-0
- Vitale DL, Icardi A, Rosales P, et al. Targeting the Tumor Extracellular Matrix by the Natural Molecule 4-Methylumbelliferone: A Complementary and Alternative Cancer Therapeutic Strategy. Front Oncol. 2021;11:710061. doi: 10.3389/fonc.2021.710061
- Kakizaki I, Takagaki K, Endo Y, et al. Inhibition of hyaluronan synthesis in Streptococcus equi FM100 by 4-methylumbelliferone. Eur J Biochem. 2002;269(20):5066-75. doi: 10.1046/j.1432-1033.2002.03217.x
- Jong A, Wu CH, Chen HM, et al. Identification and characterization of CPS1 as a hyaluronic acid synthase contributing to the pathogenesis of Cryptococcus neoformans infection. Eukaryot Cell. 2007;6(8):1486-96. doi: 10.1128/EC.00120-07
- Yoshioka Y, Kozawa E, Urakawa H, et al. Suppression of hyaluronan synthesis alleviates inflammatory responses in murine arthritis and in human rheumatoid synovial fibroblasts. Arthritis Rheum. 2013;65(5):1160-70. doi: 10.1002/art.37861
- Mueller AM, Yoon BH, Sadiq SA. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J Biol Chem. 2014;289(33):22888-99. doi: 10.1074/jbc.M114.559583
- Nagy N, Kaber G, Sunkari VG, et al. Inhibition of hyaluronan synthesis prevents β-cell loss in obesity-associated type 2 diabetes. Matrix Biol. 2023;123:34-47. doi: 10.1016/j.matbio.2023.09.003
- Al-Majedy YK, Al-Amiery AA, Kadhum AA, Mohamad AB. Antioxidant Activities of 4-Methylumbelliferone Derivatives. PLoS One. 2016;11(5):e0156625. doi: 10.1371/journal.pone.0156625
- Lin Z, Cheng X, Zheng H. Umbelliferon: a review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology. 2023;31(4):1731-50. doi: 10.1007/s10787-023-01256-3
- Tsitrina AA, Halimani N, Andreichenko IN, et al. 4-Methylumbelliferone Targets Revealed by Public Data Analysis and Liver Transcriptome Sequencing. Int J Mol Sci. 2023;24(3):2129. doi: 10.3390/ijms24032129
- Li T, Francl JM, Boehme S, Chiang JY. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7α-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology. 2013;58(3):1111-21. doi: 10.1002/hep.26427
- Xing X, Burgermeister E, Geisler F, et al. Hematopoietically expressed homeobox is a target gene of farnesoid X receptor in chenodeoxycholic acid-induced liver hypertrophy. Hepatology. 2009;49(3):979-88. doi: 10.1002/hep.22712
- Gupta S, Stravitz RT, Dent P, Hylemon PB. Down-regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J Biol Chem. 2001;276(19):15816-22. doi: 10.1074/jbc.M010878200
- Chiang JYL, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. Liver Res. 2020;4(2):47-63. doi: 10.1016/j.livres.2020.05.001
Supplementary files
