The impact of physical exercise on the endocrine system in men: A review
- Authors: Berkovskaya M.A.1, Elmurzaeva A.A.2, Edaev A.L.1, Selakhov T.Y.1, Tokaev H.M.1, Gurova I.D.1
-
Affiliations:
- Sechenov First Moscow State Medical University (Sechenov University)
- Kadyrov Chechen State University
- Issue: Vol 26, No 4 (2024): Эндокринология
- Pages: 263-268
- Section: Articles
- URL: https://ogarev-online.ru/2075-1753/article/view/257358
- DOI: https://doi.org/10.26442/20751753.2024.4.202697
- ID: 257358
Cite item
Full Text
Abstract
The endocrine system regulates many functions of the human body to maintain optimal performance and homeostasis of various organs and systems. Playing sports and various physical activities changes the regulatory function of the endocrine organs in the form of successive phases, and the magnitude of the response depends on the intensity and duration of the physical stress exerted. Hormonal regulation during physical activity facilitates the adaptation of the functional activity of the cardiovascular system, the activation of energy depots, and the maintenance of adequate tissue hydration. Physical activity leads to an increase in the production of growth hormone, insulin-like growth factor-1, total and free testosterone, which enhances the anabolic reactions of the body. It is important to understand the relationship and impact of physical activity on the functioning of the endocrine system for the development of physical exercise’s complexes, patient rehabilitation, research and treatment of endocrine disorders. The effect of physical activity on the endocrine system for women has been studied to a greater extent, in contrast to men, where the data is contradictory. Therefore, in this article we will highlight the features of various endocrine organs and hormones during sports activities in men.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Marina A. Berkovskaya
Sechenov First Moscow State Medical University (Sechenov University)
Author for correspondence.
Email: abaitamar@gmail.com
ORCID iD: 0000-0003-4974-7765
SPIN-code: 4251-7117
Cand. Sci. (Med.)
Russian Federation, MoscowAsya A. Elmurzaeva
Kadyrov Chechen State University
Email: abaitamar@gmail.com
Student
Russian Federation, GroznyApi L.-A. Edaev
Sechenov First Moscow State Medical University (Sechenov University)
Email: abaitamar@gmail.com
Student
Russian Federation, MoscowTimerlan Yu. Selakhov
Sechenov First Moscow State Medical University (Sechenov University)
Email: abaitamar@gmail.com
Student
Russian Federation, MoscowHabib M. Tokaev
Sechenov First Moscow State Medical University (Sechenov University)
Email: abaitamar@gmail.com
Student
Russian Federation, MoscowIrina D. Gurova
Sechenov First Moscow State Medical University (Sechenov University)
Email: abaitamar@gmail.com
ORCID iD: 0000-0003-2040-0899
Clinical Resident
Russian Federation, MoscowReferences
- Athanasiou N, Bogdanis GC, Mastorakos G. Endocrine responses of the stress system to different types of exercise. Rev Endocr Metab Disord. 2023;24(2):251-66. doi: 10.1007/s11154-022-09758-1
- Duclos M, Tabarin A. Exercise and the hypothalamo-pituitary-adrenal axis. Front Horm Res. 2016;47:12-26. doi: 10.1159/000445149
- Garber CE, Blissmer B, Deschenes MR, et al.; American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334-59. doi: 10.1249/MSS.0b013e318213fefb
- Hackney AC. Exercise as a stressor to the human neuroendocrine system. Medicina (Kaunas). 2006;42(10):788-97. PMID: 17090977
- Kageyama K, Nemoto T. Molecular mechanisms underlying stress response and resilience. Int J Mol Sci. 2022;23(16):9007. doi: 10.3390/ijms23169007
- Leistner C, Menke A. Hypothalamic-pituitary-adrenal axis and stress. Handb Clin Neurol. 2020;175:55-64. doi: 10.1016/B978-0-444-64123-6.00004-7
- Minas A, Fernandes ACC, Maciel Júnior VL, et al. Influence of physical activity on male fertility. Andrologia. 2022;54(7):e14433. doi: 10.1111/and.14433
- Friedenreich CM, Wang Q, Shaw E, et al. The effect of prescribed exercise volume on biomarkers of chronic stress in postmenopausal women: Results from the Breast Cancer and Exercise Trial in Alberta (BETA). Prev Med Rep. 2019;15:100960. doi: 10.1016/j.pmedr.2019.100960
- Banitalebi E, Faramarzi M, Bagheri L, Kazemi AR. Comparison of performing 12 weeks’ resistance training before, after and/or in between aerobic exercise on the hormonal status of aged women: A randomized controlled trial. Horm Mol Biol Clin Investig. 2018;35(3). doi: 10.1515/hmbci-2018-0020
- Mueller PJ, Clifford PS, Crandall CG, et al. Integration of central and peripheral regulation of the circulation during exercise: Acute and chronic adaptations. Compr Physiol. 2017;8(1):103-51. doi: 10.1002/cphy.c160040
- Герасименко Д.К. Роль катехоловых аминов в приспособительных реакциях сердечно-сосудистой системы к физическим нагрузкам. Вопросы науки и образования. 2018;7(19):23-5 [Gerasimenko DK. Role of catecholic amines in cardiovascular adaptive responses to exercise. Issues of Science and Education. 2018;7(19):23-5 (in Russian)].
- Yanovski JA, Yanovski SZ, Boyle AJ, et al. Hypothalamic-pituitary-adrenal axis activity during exercise in African American and Caucasian women. J Clin Endocrinol Metab. 2000;85(8):2660-3. doi: 10.1210/jcem.85.8.6708
- de Souza HS, Jardim TV, Barroso WKS, et al. Hormonal assessment of participants in a long distance walk. Diabetol Metab Syndr. 2019;11:19. doi: 10.1186/s13098-019-0414-1
- Walker S, Santolamazza F, Kraemer W, Häkkinen K. Effects of prolonged hypertrophic resistance training on acute endocrine responses in young and older men. J Aging Phys Act. 2015;23(2):230-6. doi: 10.1123/japa.2013-0029
- Kim J, Saidel GM, Kirwan JP, Cabrera ME. Computational model of glucose homeostasis during exercise. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:311-4. doi: 10.1109/IEMBS.2006.260736
- Tabata I, Ogita F, Miyachi M, Shibayama H. Effect of low blood glucose on plasma CRF, ACTH, and cortisol during prolonged physical exercise. J Appl Physiol (1985). 1991;71(5):1807-12. doi: 10.1152/jappl.1991.71.5.1807
- Демидова Т.Ю., Скуридина Д.В., Кочина А.С. Влияние физической активности на пролактин и гормоны щитовидной железы. Академия медицины и спорта. 2021;3(2):25-9 [Demidova TYu, Skuridina DV, Kochina AS. Effects of physical activity on prolactin and thyroid hormones. Academy of Medicine and Sports. 2021;2(3):25-9 (in Russian)]. doi: 10.15829/2712-7567-2021-34
- Hackney AC. Stress and the neuroendocrine system: The role of exercise as a stressor and modifier of stress. Expert Rev Endocrinol Metab. 2006;1(6):783-92. doi: 10.1586/17446651.1.6.783
- Wright HE, Selkirk GA, McLellan TM. HPA and SAS responses to increasing core temperature during uncompensable exertional heat stress in trained and untrained males. Eur J Appl Physiol. 2010;108(5):987-97. doi: 10.1007/s00421-009-1294-0
- Currier BS, Mcleod JC, Banfield L, et al. Resistance training prescription for muscle strength and hypertrophy in healthy adults: A systematic review and Bayesian network meta-analysis. Br J Sports Med. 2023;57(18):1211-20. doi: 10.1136/bjsports-2023-106807
- Malin SK, Rynders CA, Weltman JY, et al. Exercise intensity modulates glucose-stimulated insulin secretion when adjusted for adipose, liver and skeletal muscle insulin resistance. PLoS One. 2016;11(4):e0154063. doi: 10.1371/journal.pone.0154063
- Ботвинева Л.А., Корягина Ю.В. Физическая нагрузка и соматотропный гормон. Российский журнал спортивной науки: медицина, физиология, тренировка. 2022;3(3):11-6 [Botvineva LA, Koryagina YuV. Physical activity and somatotropic hormone. Russian Journal of Sports Science: Medicine, Physiology, Training. 2022;3(3):11-6 (in Russian)]. doi: 10.51871/2782- 6570_2022_01_03_2
- Kraemer WJ, Ratamess NA, Nindl BC. Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise. J Appl Physiol (1985). 2017;122(3):549-58. doi: 10.1152/japplphysiol.00599.2016
- Hackney AC, Lane AR. Exercise and the regulation of endocrine hormones. Prog Mol Biol Transl Sci. 2015;135:293-311. doi: 10.1016/bs.pmbts.2015.07.001
- Walker S, Häkkinen K, Virtanen R, et al. Acute neuromuscular and hormonal responses to 20 versus 40% velocity loss in males and females before and after 8 weeks of velocity-loss resistance training. Exp Physiol. 2022;107(9):1046-60. doi: 10.1113/EP090371
- Gilbert KL, Stokes KA, Hall GM, Thompson D. Growth hormone responses to 3 different exercise bouts in 18- to 25- and 40- to 50-year-old men. Appl Physiol Nutr Metab. 2008;33(4):706-12. DOI:110.1139/H08-034
- Bird SP, Tarpenning KM, Marino FE. Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sports Med. 2005;35(10):841-51. doi: 10.2165/00007256-200535100-00002
- Arwert LI, Roos JC, Lips P, et al. Effects of 10 years of growth hormone (GH) replacement therapy in adult GH-deficient men. Clin Endocrinol (Oxf). 2005;63(3):310-6. doi: 10.1111/j.1365-2265.2005.02343.x
- Ritsche K, Nindl BC, Wideman L. Exercise-Induced growth hormone during acute sleep deprivation. Physiol Rep. 2014;2(10):e12166. doi: 10.14814/phy2.12166
- McGlory C, Phillips SM. Exercise and the Regulation of skeletal muscle hypertrophy. Prog Mol Biol Transl Sci. 2015;135:153-73. doi: 10.1016/bs.pmbts.2015.06.018
- West DW, Kujbida GW, Moore DR, et al. Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol. 2009;587(Pt. 21):5239-47. doi: 10.1113/jphysiol.2009.177220
- West DW, Cotie LM, Mitchell CJ, et al. Resistance exercise order does not determine postexercise delivery of testosterone, growth hormone, and IGF-1 to skeletal muscle. Appl Physiol Nutr Metab. 2013;38(2):220-6. doi: 10.1139/apnm-2012-0397
- Lin J, Yang L, Huang J, et al. Insulin-like growth factor 1 and risk of cardiovascular disease: Results from the UK biobank cohort study. J Clin Endocrinol Metab. 2023;108(9):e850-60. doi: 10.1210/clinem/dgad105
- Li B, Feng L, Wu X, et al. Effects of different modes of exercise on skeletal muscle mass and function and IGF-1 signaling during early aging in mice. J Exp Biol. 2022;225(21):jeb244650. doi: 10.1242/jeb.244650
- Herbert P, Hayes LD, Sculthorpe NF, Grace FM. HIIT produces increases in muscle power and free testosterone in male masters athletes. Endocr Connect. 2017;6(7):430-6. doi: 10.1530/EC-17-0159
- Kanaley JA, Colberg SR, Corcoran MH, et al. Exercise/physical activity in individuals with type 2 diabetes: A consensus statement from the American college of sports medicine. Med Sci Sports Exerc. 2022;54(2):353-68. doi: 10.1249/mss.0000000000002800
- Shabkhiz F, Khalafi M, Rosenkranz S, et al. Resistance training attenuates circulating FGF-21 and myostatin and improves insulin resistance in elderly men with and without type 2 diabetes mellitus: A randomized controlled clinical trial. Eur J Sport Sci. 2021;21(4):636-45. doi: 10.1080/17461391.2020.1762755
- Petersen MH, de Almeida ME, Wentorf EK, et al. High-intensity interval training combining rowing and cycling efficiently improves insulin sensitivity, body composition and VO2max in men with obesity and type 2 diabetes. Front Endocrinol (Lausanne). 2022;13:1032235. doi: 10.3389/fendo.2022.1032235
- Schmidt KL, Macdougall-Shackleton EA, Soma KK, Macdougall-Shackleton SA. Developmental programming of the HPA and HPG axes by early-life stress in male and female song sparrows. Gen Comp Endocrinol. 2014;196:72-80. doi: 10.1016/j.ygcen.2013.11.014
- Cano Sokoloff N, Misra M, Ackerman KE. Exercise, training, and the hypothalamic-pituitary-gonadal axis in men and women. Front Horm Res. 2016;47:27-43. doi: 10.1159/000445154
- Wood RI, Stanton SJ. Testosterone and sport: current perspectives. Horm Behav. 2012;61(1):147-55. doi: 10.1016/j.yhbeh.2011.09.010
- Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004;34(8):513-54. doi: 10.2165/00007256-200434080-00003
- West DW, Phillips SM. Anabolic processes in human skeletal muscle: restoring the identities of growth hormone and testosterone. Phys Sportsmed. 2010;38(3):97-104. doi: 10.3810/psm.2010.10.1814
- Kadi F. Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br J Pharmacol. 2008;154(3):522-8. doi: 10.1038/bjp.2008.118
- Grandys M, Majerczak J, Duda K, et al. Endurance training of moderate intensity increases testosterone concentration in young, healthy men. Int J Sports Med. 2009;30(7):489-95. doi: 10.1055/s-0029-1202340
- Fitzgerald LZ, Robbins WA, Kesner JS, Xun L. Reproductive hormones and interleukin-6 in serious leisure male athletes. Eur J Appl Physiol. 2012;112(11):3765-73. doi: 10.1007/s00421-012-2356-2
- Saka T, Sofikerim M, Demirtas A, et al. Rigorous bicycling does not increase serum levels of total and free prostate-specific antigen (PSA), the free/total PSA ratio, gonadotropin levels, or uroflowmetric parameters. Urology. 2009;74(6):1325-30. doi: 10.1016/j.urology.2009.07.1219
- Lucía A, Chicharro JL, Pérez M, et al. Reproductive function in male endurance athletes: Sperm analysis and hormonal profile. J Appl Physiol (1985). 1996;81(6):2627-36. doi: 10.1152/jappl.1996.81.6.2627
- Tafuri A, Bondi D, Princiotta A, et al. Effects of physical activity at high altitude on hormonal profiles in foreign trekkers and indigenous Nepalese porters. Adv Exp Med Biol. 2021;1335:111-9. doi: 10.1007/5584_2021_627
- Чернозуб А.А. Изменение содержания тестостерона в сыворотке крови у людей с различным уровнем тренированности в условиях силовой нагрузки. Вестник Российской академии медицинских наук. 2013;68(10):37-40 [Chernozub AA. Changing the content of testosterone in the blood of people of different level of fitness in terms of power load. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk = Annals of the Russian Academy of Medical Sciences. 2013;68(10):37-40 (in Russian)].
- Di Luigi L, Sgrò P, Fierro V, et al. Prevalence of undiagnosed testosterone deficiency in aging athletes: does exercise training influence the symptoms of male hypogonadism? J Sex Med. 2010;7(7):2591-601. doi: 10.1111/j.1743-6109.2009.01694.x
- Ahtiainen JP, Nyman K, Huhtaniemi I, et al. Effects of resistance training on testosterone metabolism in younger and older men. Exp Gerontol. 2015;69:148-58. doi: 10.1016/j.exger.2015.06.010
- World Health Organisation. Physical activity. 2022. Available at: https://www.who.int/news-room/fact-sheets/detail/physical-activity. Accessed: 26.03.2024.
- Flegal KM, Kruszon-Moran D, Carroll MD, et al. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315(21):2284-91. doi: 10.1001/jama.2016.6458
- Safar ME, Czernichow S, Blacher J. Obesity, arterial stiffness, and cardiovascular risk. J Am Soc Nephrol. 2006;17(4 Suppl. 2):S109-11. doi: 10.1681/ASN.2005121321
- Hopstock LA, Deraas TS, Henriksen A, et al. Changes in adiposity, physical activity, cardiometabolic risk factors, diet, physical capacity and well-being in inactive women and men aged 57–74 years with obesity and cardiovascular risk – A 6-month complex lifestyle intervention with 6-month follow-up. PLoS One. 2021;16(8):e0256631. doi: 10.1371/journal.pone.0256631
- Park W, Jung WS, Hong K, et al. Effects of moderate combined resistance- and aerobic-exercise for 12 weeks on body composition, cardiometabolic risk factors, blood pressure, arterial stiffness, and physical functions, among obese older men: A pilot study. Int J Environ Res Public Health. 2020;17(19):7233. doi: 10.3390/ijerph17197233
- Hackney AC, Fahrner CL, Gulledge TP. Basal reproductive hormonal profiles are altered in endurance trained men. J Sports Med Phys Fitness. 1998;38(2):138-41. PMID: 9763799
Supplementary files
