Highly selective sodium glucose cotransporter type 2 inhibitor empagliflozin neuroprotective potential in chronic brain dyscirculation
- Authors: Fuks О.S.1, Simanenkova A.V.1,2, Timkina N.V.1,2, Tikhomirova P.A.2, Gagiev A.Z.2, Karonova T.L.1,2
-
Affiliations:
- Almazov National Medical Research Centre
- Pavlov First Saint Petersburg State Medical University
- Issue: Vol 25, No 4 (2023): Endocrinology
- Pages: 247-252
- Section: Articles
- URL: https://ogarev-online.ru/2075-1753/article/view/131656
- DOI: https://doi.org/10.26442/20751753.2023.4.202277
- ID: 131656
Cite item
Full Text
Abstract
Background. Chronic brain dyscirculation occurs in type 2 diabetes mellitus (DM2) with a high frequency and leads to patients’ disability. The early diagnosis of this disorder is difficult. Sodium-glucose cotransporter type 2 inhibitors are among the priority antidiabetic drugs due to their pronounced cardioprotective effect, but their effect on the central nervous system has not been studied enough.
Aim. To study empagliflozin effect on clinical and laboratory parameters of brain damage in patients with DM2.
Materials and methods. The study included patients with DM2 on metformin therapy (n=52). Patients with target glycated hemoglobin level formed the “MET” group (n=18), in those with non-target glycated hemoglobin level empagliflozin was added for 6 months (group “MET+EMPA”; n=19). A healthy control group was also created (n=15). The cognitive status and concentration of neurofilament light chains were studied.
Results. In patients of the “MET” group, despite the target level of glycated hemoglobin, there was a cognitive deficit, according to the Montreal Cognitive Assessment: 25.0 (21.0; 27.0) points with a norm of 26 points or more. Therapy with empagliflozin led to the normalization of cognitive status after 6 months: 26.5 (24.0; 27.0) points. Initially, all patients had an increased neurofilament light chains level: 4.50 (3.31; 5.56) ng/ml in the “MET” group, 5.25 (3.75; 6.25) ng/ml in the “MET+EMPA” comparing with 3.50 (2.25; 3.50) ng/ml in the “Control” group. Empagliflozin therapy led to a decrease in this parameter after 3 months: 3.80 (3.25; 3.87) ng/ml – and maintenance of this level after 6 months.
Conclusion. DM2 is accompanied by pathological changes in the central nervous system even under satisfactory glycemic control. Empagliflozin therapy causes an improvement in cognitive status and a decrease in the level of neurofilament light chains.
Full Text
##article.viewOnOriginalSite##About the authors
Оksana S. Fuks
Almazov National Medical Research Centre
Email: annasimanenkova@mail.ru
ORCID iD: 0000-0003-0112-5027
Research Laboratory Assistant
Russian Federation, Saint PetersburgAnna V. Simanenkova
Almazov National Medical Research Centre; Pavlov First Saint Petersburg State Medical University
Author for correspondence.
Email: annasimanenkova@mail.ru
ORCID iD: 0000-0003-3300-1280
Cand. Sci. (Med.)
Russian Federation, Saint Petersburg; Saint PetersburgNatalya V. Timkina
Almazov National Medical Research Centre; Pavlov First Saint Petersburg State Medical University
Email: annasimanenkova@mail.ru
ORCID iD: 0000-0001-9836-5427
Graduate Student
Russian Federation, Saint Petersburg; Saint PetersburgPolina A. Tikhomirova
Pavlov First Saint Petersburg State Medical University
Email: annasimanenkova@mail.ru
ORCID iD: 0000-0002-4113-1459
Student
Russian Federation, Saint PetersburgAleksandr Z. Gagiev
Pavlov First Saint Petersburg State Medical University
Email: annasimanenkova@mail.ru
ORCID iD: 0000-0002-5052-5337
Student
Russian Federation, Saint PetersburgTatiana L. Karonova
Almazov National Medical Research Centre; Pavlov First Saint Petersburg State Medical University
Email: annasimanenkova@mail.ru
ORCID iD: 0000-0002-1547-0123
D. Sci. (Med.)
Russian Federation, Saint Petersburg; Saint PetersburgReferences
- Дедов И.И., Шестакова М.В., Викулова О.К., и др. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным Федерального регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021;24(3):204-21 [Dedov II, Shestakova MV, Vikulova OK, et al. Epidemiological characteristics of diabetes mellitus in the Russian Federation: clinical and statistical analysis according to the Federal diabetes register data of 01.01.2021. Diabetes mellitus. 2021;24(3):204-21 (in Russian)]. doi: 10.14341/DM12759
- Mosenzon O, Cheng AY, Rabinstein AA, et al. Diabetes and Stroke: What Are the Connections? J Stroke. 2023;25(1):26-38. doi: 10.5853/jos.2022.02306
- Roy B, Ehlert L, Mullur R, et al. Regional Brain Gray Matter Changes in Patients with Type 2 Diabetes Mellitus. Sci Rep. 2020;10(1):9925. doi: 10.1186/s12967-021-03092-x
- Дедов И.И., Шестакова М.В., Майоров А.Ю., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом: Клинические рекомендации. Вып. 11. Сахарный диабет. 2023;26(2S):1-231 [Dedov II, Shestakova MV, Mayorov AYu, et al. Standards of specialized diabetes care. 11th edition. Diabetes mellitus. 2023;26(2S):1-231 (in Russian)]. doi: 10.14341/DM13042
- American Diabetes Association; Introduction: Standards of Medical Care in Diabetes–2022. Diabetes Care. 2022;45(Suppl. 1):S1-2. doi: 10.2337/dc22-Sint
- Giugliano D, Scappaticcio L, Longo M, et al. GLP-1 receptor agonists vs. SGLT-2 inhibitors: the gap seems to be leveling off. Cardiovasc Diabetol. 2021;20(1):205. doi: 10.1186/s12933-021-01400-9
- Bellastella G, Maiorino MI, Longo M, et al. Glucagon-Like Peptide-1 Receptor Agonists and Prevention of Stroke Systematic Review of Cardiovascular Outcome Trials With Meta-Analysis. Stroke. 2020;51(2):666-9. doi: 10.1161/STROKEAHA.119.027557
- Pandey AK, Okaj I, Kaur H, et al. Sodium-Glucose Co-Transporter Inhibitors and Atrial Fibrillation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc. 2021;10(17):e022222. doi: 10.1161/JAHA.121.022222
- Li HL, Lip GYH, Feng Q, et al. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and cardiac arrhythmias: a systematic review and meta-analysis. Cardiovasc Diabetol. 2021;20(1):100. doi: 10.1186/s12933-021-01293-8
- Lee SW, Clemenson GD, Gage FH. New neurons in an aged brain. Behav Brain Res. 2012;227(2):497-507. doi: 10.1016/j.bbr.2011.10.009
- Bachor TP, Suburo AM. Neural Stem Cells in the Diabetic Brain. Stem Cells Int. 2012;2012:1-10. doi: 10.1155/2012/820790
- Остроумова О.Д., Суркова Е.В., Ших Е.В., и др. Когнитивные нарушения у больных сахарным диабетом 2 типа: распространенность, патогенетические механизмы, влияние противодиабетических препаратов. Сахарный диабет. 2018;21(4):307-18 [Ostroumova OD, Surkova EV, Chikh EV, et al. Cognitive impairment in patients with type 2 diabetes mellitus: prevalence, pathogenetic mechanisms, the effect of antidiabetic drugs. Diabetes mellitus. 2018;21(4):307-18 (in Russian)].
- Maalmi H, Strom A, Petrera A, et al. Serum neurofilament light chain: a novel biomarker for early diabetic sensorimotor polyneuropathy. Diabetologia. 2023;66(3):579-89. doi: 10.1007/s00125-022-05846-8
- Ciardullo S, Muraca E, Bianconi E, et al. Diabetes Mellitus is Associated With Higher Serum Neurofilament Light Chain Levels in the General US Population. J Clin Endocrinol Metab. 2023;108(2):361-7. doi: 10.1210/clinem/dgac580
- Nguyen T, Wen S, Gong M, et al. Dapagliflozin Activates Neurons in the Central Nervous System and Regulates Cardiovascular Activity by Inhibiting SGLT-2 in Mice. Diabetes Metab Syndr Obes. 2020;13:2781-99. doi: 10.2147/DMSO.S258593
- Tsai WH, Chuang SM, Liu SC, et al. Effects of SGLT2 inhibitors on stroke and its subtypes in patients with type 2 diabetes: a systematic review and meta-analysis. Sci Rep. 2021;11(1):15364. doi: 10.1038/s41598-021-94945-4
- Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015;11(6):1164-78. doi: 10.5114/aoms.2015.56342
- Zhen YF, Zhang J, Liu XY, et al. Low BDNF is associated with cognitive deficits in patients with type 2 diabetes. Psychopharmacology (Berl). 2013;227(1):93-100. doi: 10.1007/s00213-012-2942-3
- Mao Z, Zhang W. Role of mTOR in Glucose and Lipid Metabolism. Int J Mol Sci. 2018;19(7):2043. doi: 10.3390/ijms19072043
- Pawlos A, Broncel M, Woźniak E, et al. Neuroprotective Effect of SGLT2 Inhibitors. Molecules. 2021;26(23):7213. doi: 10.3390/molecules26237213
