COVID-associated cognitive impairments: A review

Cover Page

Cite item

Full Text

Abstract

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, began in March 2020 and continues to the present. The virus most often affects the respiratory system; to date, there is evidence of possible damage to the heart, skin, kidneys, central nervous system in this disease. In this regard, it is of great interest to study the neurological features of COVID-19, in particular, the development of cognitive disorders or the increase in the severity of already existing cognitive impairments. This review provides the latest data on the relationship of COVID-19 and cognitive impairment, the proposed etiology, pathogenesis and main clinical manifestations of cognitive disorders, and also discusses possible strategies for the treatment of cognitive impairment after suffering COVID-19.

About the authors

Irina S. Preobrazhenskaya

Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: irinasp2@yandex.ru
ORCID iD: 0000-0002-9097-898X

D. Sci. (Med.), Prof., Sechenov First Moscow State Medical University (Sechenov University)

Russian Federation, Moscow

References

  1. Tarantola D, Dasgupta N. COVID-19 Surveillance Data: A Primer for Epidemiology and Data Science. Am J Public Health. 2021;111(4):614-9. doi: 10.2105/AJPH.2020.306088
  2. Wu Z, McGoogan JM. Characteristics of and important lessons from the Coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323:1239-42. doi: 10.1001/jama.2020.2648
  3. Tsai ST, Lu MK, San S, Tsai CH. The neurologic manifestations of Coronavirus disease 2019 pandemic: a systemic review. Front Neurol. 2020;11:498. doi: 10.3389/fneur.2020.00498
  4. Pinzon RT, Wijaya VO, Buana RB, et al. Neurologic characteristics in Coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Front Neurol. 2020;11:565. doi: 10.3389/fneur.2020.00565
  5. Pajo AT, Espiritu AI, Apor ADAO, Jamora RDG. Neuropathologic findings of patients with COVID-19: a systematic review. Neurol Sci. 2021;42(4):1255-66. doi: 10.1007/s10072-021-05068-7
  6. Kantonen J, Mahzabin S, Mäyränpää MI, et al. Neuropathologic features of four autopsied COVID-19 patients. Brain Pathol. 2020;30(6):1012-6. doi: 10.1111/bpa.12889
  7. Fabbri VP, Foschini MP, Lazzarotto T, et al. Brain ischemic injury in COVID-19-infected patients: a series of 10 post-mortem cases. Brain Pathol. 2021;31(1):205-10. doi: 10.1111/bpa.12901
  8. Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological Features of COVID-19. N Engl J Med. 2020;383(10):989. doi: 10.1056/NEJMc2019373
  9. Matschke J, Lütgehetmann M, Hagel C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19(11):919-29. doi: 10.1016/S1474-4422(20)30308-2
  10. Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415-24. doi: 10.1084/jem.20050828
  11. Bodro M, Compta Y, Sánchez-Valle R. Presentations and mechanisms of CNS disorders related to COVID-19. Neurol Neuroimmunol Neuroinflamm. 2021;8(1):e923. doi: 10.1212/NXI.0000000000000923
  12. Parra JED, Montoya DD, Peláez FJC. COVID-19 also Affects the Nervous System by One of its Gates: The Vascular Organ of Lamina Terminalis and the Olfactory Nerve. Neurological Alert, Dysosmia or Anosmia Test Can Help to A Quick Diagnosis. Int J Odontostomat. 2020;14(3):285-7. doi: 10.4067/S0718-381X2020000300285
  13. Jiao L, Yang Y, Yu W, et al. The olfactory route is a potential way for SARS-CoV-2 to invade the central nervous system of rhesus monkeys. Sig Transduct Target Ther. 2021;6:169. doi: 10.1038/s41392-021-00591-7
  14. Frontera JA, Boutajangout A, Masurkar AV, et al. Comparison of serum neurodegenerative biomarkers among hospitalized COVID-19 patients versus non-COVID subjects with normal cognition, mild cognitive impairment, or Alzheimer’s dementia. Alzheimer’s Dement. 2022;89(3):610-6. doi: 10.1002/alz.12556
  15. Sutter R, Hert L, De Marchis GM, et al. Serum Neurofilament Light Chain Levels in the Intensive Care Unit: Comparison between Severely Ill Patients with and without Coronavirus Disease 2019. Ann Neurol. 2021;89(3):610-6. doi: 10.1002/ana.26004
  16. Aamodt AH, Høgestøl EA, Popperud TH, et al. Blood neurofilament light concentration at admittance: a potential prognostic marker in COVID-19. J Neurol. 2021;268(10):3574-83. doi: 10.1007/s00415-021-10517-6
  17. Prudencio M, Erben Y, Marquez CP, et al. Serum neurofilament light protein correlates with unfavorable clinical outcomes in hospitalized patients with COVID-19. Sci Transl Med. 2021;13. doi: 10.1126/scitranslmed.abi7643
  18. Sun B, Tang N, Peluso MJ, et al. Characterization and Biomarker Analyses of Post-COVID-19 Complications and Neurological Manifestations. Cells. 2021;10(2):386. doi: 10.3390/cells10020386
  19. Altuna M, Sánchez-Saudinós MD, Lleó A. Cognitive symptoms after COVID-19. Neurology perspectives. 2021;1:16-24. doi: 10.1016/j.neurop.2021.10.005
  20. Vanderlind WM, Rabinovitz BB, Miao IY, et al. A systematic review of neuropsychological and psychiatric sequalae of COVID-19: implications for treatment. Curr Opin Psychiatry. 2021;34:420-33. doi: 10.1097/YCO.0000000000000713
  21. Almeria M, Cejudo JC, Sotoca J, et al. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav Immun Health. 2020;9:100163. doi: 10.1016/j.bbih.2020.100163
  22. Helms J, Kremer S, Merdji H, et al. Neurologic Features in Severe SARS-CoV-2 Infection. N Engl J Med. 2020;382(23):2268-70. doi: 10.1056/NEJMc2008597
  23. Zhou H, Lu S, Chen J, et al. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res. 2020;129:98-102. doi: 10.1016/j.jpsychires.2020.06.022
  24. Townsend L, Dyer AH, Jones K, et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One. 2020;15:e0240784. doi: 10.1371/journal.pone.0240784
  25. Poyiadji N, Shahin G, Noujaim D, et al. COVID-19–associated Acute Hemorrhagic Necrotizing Encephalopathy: Imaging Features. Radiology. 2020;296(2):E119-20. doi: 10.1148/radiol.2020201187
  26. Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55-8. doi: 10.1016/j.ijid.2020.03.062
  27. Oxley TJ, Mocco J, Majidi S, et al. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. N Engl J Med. 2020;382:e60. doi: 10.1056/NEJMc2009787
  28. Lyden P. Temporary Emergency Guidance to US Stroke Centers During the Coronavirus Disease 2019 (COVID-19) Pandemic. Stroke. 2020;51(6):1910-2. doi: 10.1161/STROKEAHA.120.030023
  29. Ntaios G, Pearce LA, Veltkamp R, et al. Potential Embolic Sources and Outcomes in Embolic Stroke of Undetermined Source in the NAVIGATE-ESUS Trial. Stroke. 2020;51(6):1797-804. doi: 10.1161/STROKEAHA.119.028669
  30. Ahmadi Karvigh S, Vahabizad F, Banihashemi G, et al. Ischemic Stroke in Patients with COVID-19 Disease: A Report of 10 Cases from Iran. Cerebrovasc Dis. 2021;50(2):239-44. doi: 10.1159/000513279
  31. Cavallieri F, Marti A, Fasano A, et al. Prothrombotic state induced by COVID-19 infection as trigger for stroke in young patients: A dangerous association. eNeurologicalSci. 2020;20:100247. doi: 10.1016/j.ensci.2020.100247
  32. Crivelli L, Palmer K, Calandri I, et al. Changes in cognitive functioning after COVID-19: A systematic review and meta-analysis. Alzheimer’s Dement. 2022;4(10):e2130645. doi: 10.1002/alz.12644
  33. Becker JH, Lin JJ, Doernberg M, et al. Assessment of Cognitive Function in Patients After COVID-19 Infection. JAMA Netw Open. 2021;4(10):e2130645. doi: 10.1001/jamanetworkopen.2021.30645
  34. Hampshire A, Trender W, Chamberlain SR, et al. Cognitive deficits in people who have recovered from COVID-19. E Clinical Medicine. 2021;39:101044. doi: 10.1016/j.eclinm.2021.101044
  35. Alonso-Lana S, Marquié M, Ruiz A, Boada M. Cognitive and Neuropsychiatric Manifestations of COVID-19 and Effects on Elderly Individuals with Dementia. Front Aging Neurosci. 2020;12:588872. doi: 10.3389/fnagi.2020.588872
  36. de Graaf MA, Antoni ML, Ter Kuile MM, et al. Short-term outpatient follow-up of COVID-19 patients: a multidisciplinary approach. E Clinical Medicine. 2021;32:100731. doi: 10.1016/j.eclinm.2021.100731
  37. Ceban F, Ling S, Lui LMW, et al. Fatigue and cognitive impairment in post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav Immun. 2022;101:93-135. doi: 10.1016/j.bbi.2021.12.020
  38. Stallmach A, Kesselmeier M, Bauer M, et al. Comparison of fatigue, cognitive dysfunction and psychological disorders in post-COVID patients and patients after sepsis: is there a specific constellation? Infection. 2022;46:39-48. doi: 10.1007/s15010-021-01733-3
  39. Miskowiak K, Johnsen S, Sattler S, et al. Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. Eur Neuropsychopharmacol. 2021;46:39-48. doi: 10.1016/j.euroneuro.2021.03.019
  40. Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. The Lancet. 2021;397:220-32. doi: 10.1016/S0140-6736(20)32656-8
  41. Serrano-Castro PJ, Garzón-Maldonado FJ, Casado-Naranjo I, et al. The cognitive and psychiatric subacute impairment in severe Covid-19. Sci Rep. 2022;12:3563. doi: 10.1038/s41598-022-07559-9
  42. Undurraga EA, Chowell G, Mizumoto K. COVID-19 case fatality risk by age and gender in a high testing setting in Latin America: Chile, March–August 2020. Infect Dis Poverty. 2021;10:11. doi: 10.1186/s40249-020-00785-1
  43. Goujon A, Natale F, Ghio D, et al. Age, gender, and territory of COVID-19 infections and fatalities. Luxembourg: Publications Office of the European Union, 2020. doi: 10.2760/838390
  44. Atkins JL, Masoli JAH, Delgado J, et al. Preexisting Comorbidities Predicting COVID-19 and Mortality in the UK Biobank Community Cohort. The Journals of Gerontology. 2020;75(11):2224-30. doi: 10.1093/gerona/glaa183
  45. Owolabi LF, Raafat A, Enwere OO, et al. Hemorrhagic infarctive stroke in COVID-19 patients: report of two cases and review of the literature. J Community Hosp Intern Med Perspect. 2021;11(3):322-6. doi: 10.1080/20009666.2021.1883814
  46. Nalugo M, Schulte LJ, Masood MF, Zayed MA. Microvascular Angiopathic Consequences of COVID-19. Front Cardiovasc Med. 2021;8:26. doi: 10.3389/fcvm.2021.636843
  47. Lara B, Carnes A, Dakterzada F, et al. Neuropsychiatric symptoms and quality of life in Spanish patients with Alzheimer’s disease during the COVID-19 lockdown. Eur J Neurol. 2020;27:1744-7. doi: 10.1111/ene.14339
  48. Nakamura ZM, Nash RP, Laughon SL, Rosenstein DL. Neuropsychiatric Complications of COVID-19. Curr Psychiatry Rep. 2021;23(5):25. doi: 10.1007/s11920-021-01237-9
  49. Iodice F, Cassano V, Rossini PM. Direct and indirect neurological, cognitive, and behavioral effects of COVID-19 on the healthy elderly, mild-cognitive-impairment, and Alzheimer’s disease populations. Neurol Sci. 2021;42(2):455-65. doi: 10.1007/s10072-020-04902-8
  50. Miners S, Kehoe PG, Love S. Cognitive impact of COVID-19: looking beyond the short term. Alzheimers Res Ther. 2020;12(1):170. doi: 10.1186/s13195-020-00744-w
  51. Fotuhi M, Mian A, Meysami S, Raji CA. Neurobiology of COVID-19. J Alzheimer’s Dis. 2020;76:3-19. doi: 10.3233/JAD-200581
  52. Wang F, Kream RM, Stefano GB. Long-Term Respiratory and Neurological Sequelae of COVID-19. Med Sci Monit. 2020;26(7):4016-26. doi: 10.12659/MSM.928996
  53. Kuo CL, Pilling LC, Atkins JL, et al. APOE e4 Genotype Predicts Severe COVID-19 in the UK Biobank Community Cohort. The Journals of Gerontology. 2020;75(11):2231-2. doi: 10.1093/gerona/glaa131
  54. Douaud G, Lee S, Alfaro-Almagro F, et al. Brain imaging before and after COVID-19 in UK Biobank. medRxiv Prepr Serv Heal Sci. 2021;06(11). doi: 10.1101/2021.06.11.21258690
  55. Государственный реестр лекарственных средств Минздрава России. Режим доступа: https://grls.rosminzdrav.ru. Ссылка активна на 25.03.2022. [Gosudarstvennyi reestr lekarstvennykh sredstv Minzdrava Rossii. Available at: https://grls.rosminzdrav.ru. Accessed: 25.03.2022 (in Russian)].
  56. Остроумова О.Д., Кочетков А.И., Остроумова Т.М., Клепикова М.В. Потенциал ницерголина в условиях полиморбидности и когнитивных нарушений (клинический пример). Медицинский алфавит. 2020;1(19):11-8 [Ostroumova OD, Kochetkov AI, Ostroumova TM, Klepikova MV. Potential of nicergoline in polymorbidity and cognitive impairment (clinical case). Medical alphabet. 2020;1(19):11-8 (in Russian)]. doi: 10.33667/2078-5631-2020-19-11-18
  57. Fioravanti M, Flicker L. Nicergoline for dementia and other age associated forms of cognitive impairment. Cochrane Database Syst Rev. 2001;4. doi: 10.1002/14651858.CD003159
  58. Fioravanti M, Nakashima T, Xu J, Garg A. A systematic review and meta-analysis assessing adverse event profile and tolerability of nicergoline. BMJ Open. 2014;4(7):e005090. doi: 10.1136/bmjopen-2014-005090
  59. Boulu P. Effects du Sermion® sur les troubles mn.esiques et les fonctions de la vie de relation. Tempo medical. 1990;397:24-7.
  60. Sibilio P, Bini S, Fiscon G, et al. In silico drug repurposing in COVID-19: A network-based analysis. Biomed Pharmacother. 2021;142:111954. doi: 10.1016/j.biopha.2021.111954
  61. Rose L, Graham L, Koenecke A, et al. The Association Between Alpha-1 Adrenergic Receptor Antagonists and In-Hospital Mortality From COVID-19. Front Med. 2021;8. doi: 10.3389/fmed.2021.637647
  62. Luo P, Liu D, Li J. Epinephrine use in COVID-19: friend or foe? Eur J Hosp Pharm. 2021;28(1):e1. doi: 10.1136/ejhpharm-2020-002295
  63. Navan C. Possible Drug Candidates for COVID-19. chemRxiv. 2020. Available at: https://chemrxiv.org/articles/Possible_Drug_Candidates_for_COVID-19/11985231. Accessed: 25.03.2022.
  64. Rejdak K, Karbowniczek A, Białecka M, et al. Treatment in post-COVID syndrome – nicergoline as the therapeutic potential in reduction symptoms of COVID brain fog. Medycyna Faktów. 2021;14:294-302. doi: 10.24292/01.MF.0321.12
  65. Ikemoto K. Multi-Particulate High Intensity of Brain MRI in 30’s Male Heavy Smoker Suicidal Attempt Case following Mild COVID-19 Pneumonia. Adv Case Stud. 2021;3(2):e1. doi: 10.31031/AICS.2021.03.000558

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».