Method for calculating the characteristics of a linear type peristaltic pump with incomplete compression of the working member



如何引用文章

全文:

详细

The introductory part of the work contains brief information about the existing peristaltic pumps and their application areas. Special attention is paid to the use of miniature peristaltic pumps with a linear located tube. For such pumps, there is a sufficient number of experimental studies, but a very limited number of studies are devoted to modeling the flow in such pumps. The aim of the work is to develop a technique for calculating the characteristics of a peristaltic pump with a linear located tube and several squeezing elements that not completely compress it in the transverse direction, , based on a quasi-stationary model and verifying the applicability of the developed model by numerical modeling. A quasistationary model is obtained by compiling the Bernoulli equation for the instantaneous velocities and pressures for the current movements of the squeeze element. To evaluate the limitations of the applicability of the quasi-stationary model, numerical experiments were performed in the STAR-CCM + program taking into account the possibility of cavitation, for which the Eulerian polyphase model was used. Numerical experiments have shown that cavitation takes place at intervals when the pump discharge member returns to its initial position and the pressure in the compression area decreases. From a comparison of calculations with different pump cycle times, it is established that cavitation is essential only if the squeeze elements move too fast and the pump cycle time is sufficiently short. It was also found that fluctuations in fluid velocity within the pump are observed under the same conditions as cavitation. Comparison of the results of numerical simulation and calculations using a quasi-stationary model has shown that the calculations give an error in the time intervals when there is a simultaneous movement of pump squeeze elements. As a result of the analysis of the obtained results, it is concluded that the developed quasi-stationary model can be used for calculations if the viscosity of the pumped liquid is not less than 40 mPa •s and if the pump operating frequency is sufficiently small that the pump does not experience the specified cavitation and speed fluctuations.

作者简介

A. Grishin

Moscow Polytechnic University

Email: foxmccloud@rambler.ru

参考

  1. Aitavade E.N., Patil S.D., Kadam A.N., Mulla T.S. An Overview of Peristaltic Pump Suitable For Handling of Various Slurries and Liquids // Second International Conference on Emerging Trends in Engineering. - Jaysingpur: Dr.J.J.Magdum College of Engineering,, 2005. P. 19-24.
  2. Левицкий А.А., Левицкая З.В., Ситников А.М. Компоненты микросистемной техники. Лабораторный практикум. - Красноярск: СФУ, 2007. 85 с.
  3. Михеев А.Ю. Исследование характеристики и повышение надежности насосов перистальтического принципа действия: дис. … канд. техн. наук. Уфа, 2004. 168 c.
  4. Кускова М.А. Гидравлические характеристики перистальтических насосов // Нефтяное хозяйство. 2008. №1. С. 104-106.
  5. Mansow M.F. Design and prototyping a peristaltic pump: a report submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Mechanical Engineering. Universiti Malaysia Pahang, 2008.
  6. Faraji A., Razavi M., Fatouraee N. Linear peristaltic pump device design // Applied Mechanics and Materials. 2014. Vol. 440. P. 199-203.
  7. Bar-Cohen Y., Chang Z. Piezoelectrically Actuated Miniature Peristaltic Pump // Proceedings of the SPIE Smart Structures Conference. Newport Beach, CA, 2000. Vol. 3992, paper No. 02. 8 p. doi: 10.1117/12.388190
  8. Гришин А.И. Расчет подачи перистальтического насоса с учетом неустановившегося характера течения // Гидропневмоавтоматика и гидропривод - 2015: сборник научных трудов / под ред. д-ра техн. наук Е.М. Халатова - Ковров: ФГБОУ ВПО «КГТА им. В.А. Дегтярева», 2015. С. 183-195.
  9. Гришин А.И., Шейпак А.А. Моделирование работы перистальтического насоса линейного типа с учетом упругих свойств рабочего органа насоса // Гидравлика. Электрон. Журн. 2016. № 2. С. 115-130
  10. Шейпак А.А. Гидравлика и гидропневмопривод. Основы механики жидкости и газа: учебник. - 6-е изд., испр. и доп. М. ИНФРА-М, 2017. 272 с.
  11. Лепешкин А.В., Михайлин А.А. Гидравлика машиностроительных гидросистем: учебник. М.: изд. ЦКТ, 2013. 280 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Grishin A.I., 2018

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».