Digital PID controller for pneumatic and hydraulic systems



Cite item

Full Text

Abstract

In the development of technological systems with pneumatic or hydraulic drive, the use of automated means for their control is required. At present, automated control tools built with the help of logic controllers are widely used. The logical controller allows to solve a wide variety of tasks with minimal costs, both in terms of cost and time spent for developing the system. So the logic controller ensures the speed of systems with pneumatic or hydraulic drive up to 1 ms or less. With the use of digital automated controls, questions related to the synthesis of PID regulators and the stability of systems with pneumatic / hydraulic drive in the time domain arise. The purpose of this work was the creation and practical implementation of a digital PID controller for controlling the pneumatic / hydraulic system to provide practical recommendations for its use in engineering. The article presents a block diagram of analog and digital control systems with a proportional pneumatic distributor. The implementation of analog and digital PID-controller and optimization of its parameters by an integral criterion is presented. Comparison of analog and digital systems with the PID controller introduced into their composition is made. The quality of these systems is suggested to be estimated in the time domain by the time of the transient process and the maximum dynamic error. Practical recommendations for determining the sampling time of digital systems with a PID controller are given. An example of the developed digital automatic control system for tracking pneumatic drive is shown, its structural diagram, the general view of the control device with the logic controller and the graphic operator interface, which makes it easy to configure the automated control tool and monitor its state. The scientific novelty of the results presented in the article was that the task of investigating the dynamics of a pneumatic / hydraulic distributor with an electric control in the time domain was solved using a mathematical model that included a digital PID controller and a comparison of the results of modeling a digital system with analogue was made, and practical recommendations for determining the sampling time were given.

About the authors

K. A Truhanov

Special Design Bureau of Applied Robotics

Email: trukhanov@mail.ru
Ph.D.

References

  1. Айзерман М.А., Гусев Л.А., Розоноэр Л.И. Логика, автоматы, алгоритмы. М.: 1963. 530 с.
  2. Рогинский В.Н. Построение релейных схем управления. М.-Л.: Издательство «Энергия», 1964. 424 с.
  3. Брауэр В. Введение в теорию конечных автоматов: Пер. с нем. М.: Радио и связь, 1987. 392 с.
  4. Труханов К.А., Попов Д.Н., Ефремова К.Д. Влияние электродинамических свойств пневмо/гидрораспределителей на расчет систем при математическом моделировании // Справочник. Инженерный журнал. Журн. 2018. № 10.
  5. Гудвин, Грэм К. Проектирование систем управления / Г.К. Гудвин, С.Ф. Гребе, М.Э. Сальгадо; пер. с англ. А.М. Епанешникова. М.: БИНОМ. Лаборатория знаний, 2004 (Вологда: ПФ Полиграфист). 911 с.: ил., табл.; 24 см.; ISBN 5-94774-128-8 (в пер.)
  6. Труханов К.А. Синтез гидропривода с дискретно управляемым движением выходного звена: дис.. канд. техн. наук. Московский Государственный Технический Университет им. Н.Э. Баумана, Москва, 2013.
  7. Попов Д.Н. Динамика и регулирование гидро- и пневмосистем: Учебник для вузов. 2-е изд., перераб. и доп. М.: Машиностроение, 1987. 464 с.
  8. Труханов К.А. Математическое моделирование гидропривода вентилятора для системы охлаждения автомобильного двигателя // Известия МГТУ «МАМИ». 2012. № 1(13). С. 84-96.
  9. Andersen B.W. The analysis and design of pneumatic systems, New York, USA, John Wiley&Sons, 2001.
  10. Труханов К.А., Ефремова К.Д., Макаров И.В. Методика идентификации передаточной функции пневмо/гидроаппаратов. // Известия МГТУ «МАМИ». 2016. № 4(30). С. 74-81
  11. Настройка ПИД-регулятора - легко и просто [Электронный ресурс] URL: https://www.mathworks.com/videos/pid-control-made-easy-92818.html (дата обращения 22.05.2018)
  12. Дискретная форма регулятора [Электронный ресурс] URL: http://www.bookasutp.ru/Chapter5_4_6.aspx (дата обращения 22.05.2018)
  13. Гамазов Н.И. Экспериментальное исследование работы пневмопривода. Часть 2 // Современные технологии автоматизации. 2014. № 4.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Truhanov K.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».