Algorithm for Estimating the Convergence of Stochastic Pareto Optimization
- Authors: Beketov S.M.1, Gintciak A.M.1, Dergachev M.V.1
-
Affiliations:
- Peter the Great St. Petersburg Polytechnic University
- Issue: No 4 (2024)
- Pages: 91-99
- Section: Intelligent systems and technologies
- URL: https://ogarev-online.ru/2071-8632/article/view/286476
- DOI: https://doi.org/10.14357/20718632240409
- EDN: https://elibrary.ru/HBLXQQ
- ID: 286476
Cite item
Abstract
The research is devoted to the development of an algorithm for estimating the convergence of stochastic Pareto optimization. The relevance of the work is due to the need to reduce the computational costs that arise with large multi-criteria calculations, where it is necessary to take into account many conflicting criteria to find optimal solutions. One of the problems in this context is finding a compromise between the accuracy of the Pareto front and the resources needed to calculate it. In multicriteria optimization, it is important to evaluate convergence in order to avoid an excessive number of iterations, which may be ineffective in terms of improving the result. The problem lies in finding the optimal number of iterations, at which the Pareto front reaches sufficient accuracy, and further iterations do not lead to a significant improvement in the quality of solutions. The aim of the study is to develop an algorithm that allows us to evaluate the convergence of the Pareto front and determine when it is possible to complete the optimization process without losing the quality of solutions. The results can be useful for specialists involved in multi-criteria optimization tasks and the development of algorithms based on stochastic conditions.
About the authors
Salbek M. Beketov
Peter the Great St. Petersburg Polytechnic University
Author for correspondence.
Email: salbek.beketov@spbpu.com
Laboratory of Digital modeling of Industrial systems
Russian Federation, St. PetersburgAleksei M. Gintciak
Peter the Great St. Petersburg Polytechnic University
Email: aleksei.gintciak@spbpu.com
Candidate of technical sciences, Laboratory of Digital modeling of Industrial systems
Russian Federation, St. PetersburgMaksim V. Dergachev
Peter the Great St. Petersburg Polytechnic University
Email: dergachev.mv@edu.spbstu.ru
магистрант
Russian Federation, St. PetersburgReferences
- Tirkolaee E.B., Goli A., Faridnia A., Soltani M., Weber G.W. Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms. Journal of cleaner production. 2020;276:122927. doi: 10.1016/j.jclepro.2020.122927.
- Hua Y., Liu Q., Hao K., Jin Y. A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts. IEEE/CAA Journal of Automatica Sinica. 2021;8(2):303-318. doi: 10.1109/JAS.2021.1003817.
- Asilian Bidgoli A., Rahnamayan S., Erdem B., Erdem Z., Ibrahim A., Deb K., Grami A. Machine learning-based framework to cover optimal Pareto-front in many-objective optimization. Complex & Intelligent Systems. 2022;8(6):5287-5308. doi: 10.1007/s40747-022-00759-w.
- Gabdullin B.R., Senushkin D.S., Konushin A.S. Practical application of Multi Task Learning methods to the camera relocalization problem. Informacionnye processy. 2024;24(2):163-172 (In Russ). doi: 10.53921/18195822_2024_24_2_163.
- Cocchi G., Lapucci M., Mansueto P. Pareto front approximation through a multi-objective augmented Lagrangian method. EURO Journal on Computational Optimization. 2021;9:100008. doi: 10.1016/j.ejco.2021.100008.
- Luengo D., Martino L., Bugallo M., Elvira V., Särkkä S. A survey of Monte Carlo methods for parameter estimation. EURASIP Journal on Advances in Signal Processing. 2020;2020;1-62. doi: 10.1186/s13634-020-00675-6.
- Hu X., Fang G., Yang J., Zhao L., Ge Y. Simplified models for uncertainty quantification of extreme events using Monte Carlo technique. Reliability Engineering & System Safety. 2023;230:108935. doi: 10.1016/j.ress.2022.108935.
- McFarland J., DeCarlo E. A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty. Reliability Engineering & System Safety. 2020;197:106807. doi: 10.1016/j.ress.2020.106807.
- Moraes C.C.F., Pinheiro P.R., Rolim I.G., Costa J. L.S., Junior M.S.E., Andrade, S.J.M.D. Using the multi-criteria model for optimization of operational routes of thermal power plants. Energies. 2021;14(12):3682. doi: 10.3390/en14123682.
- Xu Y., Zhang H., Huang L., Qu R., Nojima Y. A Pareto Front grid guided multi-objective evolutionary algorithm. Applied Soft Computing. 2023;136:110095. doi: 10.3390/en14123682.
- Pospelov K.N., Burlutskaya Z.V., Gintciak A.M., Troshchenko K.D. Multiparametric Optimization of Complex System Management Scenarios Based on Simulation Models. International Journal of Technology. 2023;14(8):17481758. doi: 10.14716/ijtech.v14i8.6832.
- Null S.E., Olivares M.A., Cordera F., Lund J.R. Pareto optimality and compromise for environmental water management. Water Resources Research. 2021;57(10):e2020WR028296. doi: 10.1029/2020WR028296.
- Beketov S.M., Pospelov K.N., Redko S.G. A human capital simulation model in innovation projects. Control Sciences. 2024;3:16-25. doi: 10.25728/cs.2024.3.2.
- Beketov S.M., Zubkova D.A., Redko S.G. Comparison of optimization methods in simulation models of complex organizational and technical systems. Modeling, Optimization and Information Technology. 2024;12(3). (In Russ.). doi: 10.26102/2310-6018/2024.46.3.027.
- Fedyaevskaya D.E., Burlutskaya Z.V., Gintciak A.M., Dixit S. Hierarchical cybernetic model of oil production enterprise with distributed decision-making centers Digital Transformation: What is the Company of Today? Cham: Springer Nature Switzerland. 2023;1:21-34. doi: 10.1007/978-3-031-46594-9_2.
- Feng W., Gong D., Yu Z. Multi-objective evolutionary optimization based on online perceiving Pareto front characteristics. Information Sciences. 2021;581:912-931. doi: 10.1016/j.ins.2021.10.007.
- Kopyrin A.S., Vidishcheva E.V. Technologies of data processing and cleaning, noise identification and removal at time series. Vestnik Akademii znanij. 2020;4(39):220-228 (In Russ.). doi: 10.24411/2304-6139-2020-10466.
- Nezami N., Anahideh H. Dynamic Exploration–Exploitation Pareto Approach for high-dimensional expensive black-box optimization. Computers & Operations Research. 2024;166:106619. doi: 10.1016/j.cor.2024.106619.
- Avetisyan T.V., L'vovich Y.E., Preobrazhenskiy A.P., Preobrazhensky Y.P. Investigation of the possibilities of optimizing the management processes of cyberphysical systems. Informatsionnye Tekhnologii i Vychslitel'nye Sistemy. 2023;2:96-105 (In Russ.). doi: 10.14357/20718632230210.
- Matveev V.V., Filatova T.A. Management methods of organizational systems under risk and uncertainty for the purpose of ensuring economic security. Nacional'naja bezopasnost' i strategicheskoe planirovanie. 2021;2:73-96 (In Russ.). doi: 10.37468/2307-1400-2021-2-73-96.
Supplementary files
