On the Project of an Effective Software Platform for Working with Genetic Data of Respiratory Viruses

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Progress in sequencing technologies, i.e. reading the nucleotide sequences of living organisms, has led to a rapid growth of the amount of genetic data. The largest global projects that accumulate this information and provide online access to it are Genbank and GISAID. Also they provide basic capabilities for analyzing this data online, but they are quite limited. This significantly limits our abilities to effectively solve a number of scientific problems and tasks, so we decided to develop our own domestic (Russian) web platform with capabilities which we need. The main goal of this project is to provide a team of researchers with the opportunity to effectively solve problems in bioinformatics, virology and epidemiology, based on modern, effective, reasonably selected software solutions operating with high performance and providing many useful functionalities which can be extended by adding new necessary programs for analyzing and modeling. The web platform we are implementing will allow to download, store, search and analyze genomic sequences of viruses, such as influenza, SARS-CoV-2 and, in perspective, other viral pathogens. In addition, the project will develop and advance through efforts of IT part of our team taking into account actual needs of bioinformaticians and virologists. We plan to make it available to researchers around the world and periodically update both the software and the data (from open sources) to improve the convenience and efficiency for scientists working in the relevant areas.

作者简介

Alexander Mordvinov

A.P. Ershov Institute of Informatics Systems, Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: a.mordvinov@g.nsu.ru

Ph.D. student, assistant at the Department of Informatics Systems, Faculty of Information Technologies

俄罗斯联邦, Novosibirsk

Arseny Stuchinsky

A.P. Ershov Institute of Informatics Systems, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: a.stuchinskii@g.nsu.ru

software engineer, postgraduate student of the Department of Programming, the Faculty of Mechanics and Mathematics

俄罗斯联邦, Novosibirsk; Novosibirsk

Anton Devyaterikov

A.P. Ershov Institute of Informatics Systems, Siberian Branch of the Russian Academy of Sciences

Email: a.devyaterikov@g.nsu.ru

Ph.D. student, software engineer

俄罗斯联邦, Novosibirsk

Sergey Khayrulin

A.P. Ershov Institute of Informatics Systems, Siberian Branch of the Russian Academy of Sciences

Email: s.khayrulin@gmail.com

junior researcher

俄罗斯联邦, Novosibirsk

Natalia Palyanova

Research Institute of Virology, Federal Research Center for Fundamental and Translational Medicine, Siberian Branch of the Russian Academy of Sciences

Email: natalia.palyanova@gmail.com

junior researcher

俄罗斯联邦, Novosibirsk

Andrey Palyanov

A.P. Ershov Institute of Informatics Systems, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University; Research Institute of Virology, Federal Research Center for Fundamental and Translational Medicine, Siberian Branch of the Russian Academy of Sciences

Email: palyanov@iis.nsk.su

Doctor of physics and mathematics, director; researcher; senior lecturer at the Department of Programming, Faculty of Mechanics and Mathematics

俄罗斯联邦, Novosibirsk; Novosibirsk; Novosibirsk

参考

  1. Bogner P., Capua I., Lipman D.J., Cox N.J. A global initiative on sharing avian flu data // Nature. 2006. № 442(7106), С. 981. https://doi.org/10.1038/442981a
  2. Farley M.M. 2009 H1N1 influenza: a twenty-first century pandemic with roots in the early twentieth century // Am. J. Med. Sci. 2010. № 340(3), С. 202-208. https://doi.org/10.1097/MAJ.0b013e3181e937b0
  3. Tanner W.D., Toth D.J., Gundlapalli A.V. The pandemic potential of avian influenza A(H7N9) virus: a review // Epidemiol. Infect. 2015. № 143(16), С. 3359-3374. https://doi.org/10.1017/S0950268815001570.
  4. Martellucci C.A., Flacco M.E., Cappadona R., Bravi F., Mantovani L., Manzoli L. SARS-CoV-2 pandemic: An overview // Advances in Biological Regulation. 2020. № 77, С. 100736. https://doi.org/10.1016/j.jbior.2020.100736
  5. Si Y., Wu W., Xue X., Sun X., Qin Y., Li Y., Qiu C., Li Y., Zhuo Z., Mi Y., Zheng P. The evolution of SARS-CoV-2 and the COVID-19 pandemic // PeerJ. 2023. № 11, С. e15990. https://doi.org/10.7717/peerj.15990.
  6. Lenharo M. GISAID in crisis: can the controversial COVID genome database survive? // Nature. 2023. № 617(7961), С. 455-457. https://doi.org/10.1038/d41586-023-01517-9
  7. https://microbius.ru/news/gisaid-v-krizise-smozhet-li-vyzhit-vyzyvayuschaya-spory-baza-dannyh-genomov-covid
  8. Sayers E.W., Cavanaugh M., Clark K., Pruitt K.D., Schoch C.L., Sherry S.T., et al. GenBank // Nucleic Acids Res. 2022. №50(D1), С. D161-D164. https://doi.org/10.1093/nar/gkab1135.
  9. Sayers E.W., Cavanaugh M., Clark K., Pruitt K.D., et al. GenBank 2024 Update // Nucleic Acids Research. 2024. № 52(D1), С. D134–D137. https://doi.org/10.1093/nar/gkad903.
  10. Wu F., Zhao S., Yu B., Chen Y.M., Wang W., et al. A new coronavirus associated with human respiratory disease in China // Nature. 2020. № 579(7798), С. 265-269. https://doi.org/10.1038/s41586-020-2008-3.
  11. http://courseware.cutm.ac.in/wp-content/uploads/2020/10/ Gen-Bank.pdf.
  12. Pertsemlidis A., Fondon J.W. Having a BLAST with bioinformatics (and avoiding BLASTphemy) // Genome Biology. 2001. № 2(10), С. reviews2002.1. https://doi.org/10.1186/gb-2001-2-10-reviews2002
  13. Aksamentov I., Roemer C. et al. Nextclade: clade assignment, mutation calling and quality control for viral genomes // J. Open Source Software. 2021. № 6(67), С. 3773. https://doi.org/10.21105/joss.03773.
  14. Ahdritz G., Bouatta N., Floristean C., Kadyan S., et al. OpenFold: retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization // Nature Methods. 2024. №21(8), C. 1514-1524. https://doi.org/10.1038/s41592-024-02272-z.
  15. Devyaterikov A.P., Palyanov A.Yu. Acceleration of recombinant viral sequences search by 3SEQ algorithm via adding support of multi-threaded calculations and considering sample collection dates // Mathematical Biology and Bioinformatics. 2024. № 19(2), С. 338-353. https://doi: 10.17537/2024.19.338. https://github.com/NotNa19/RecombinantDetector.
  16. Lam H.M., Ratmann O. and Boni M.F. Improved algorithmic complexity for the 3SEQ recombination detection algorithm // Mol. Biol. Evol. 2018. №35, С. 247–251. https://doi.org/10.1093/molbev/msx263.

补充文件

附件文件
动作
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).