Approximate Estimation Using the Accelerated Maximum Entropy Method. Part 2. Study of the Properties of Estimates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we investigate a method of approximate entropy estimation, designed to speed up the classical method of maximum entropy estimation due to the use of regularization in the optimization problem. This method is compared with the method of maximum likelihood and Bayesian estimation, both experimentally and in terms of theoretical calculations for some special cases. Estimation methods are tested on the example of a linear regression problem with errors of various types, including asymmetric distributions as well as a multimodal distribution in the form of a mixture of Gaussian components.

About the authors

Y. A. Dubnov

Federal Research Center “Computer Science and Control” of Russian Academy of Sciences

Author for correspondence.
Email: yury.dubnov@phystech.edu

Researcher, Senior Lecturer

Russian Federation, Moscow

A. V. Boulytchev

Federal Research Center “Computer Science and Control” of Russian Academy of Sciences

Email: bulytchev.isa.ran@gmail.com

PhD, Leading Researcher, Assistant Professor

Russian Federation, Moscow

References

  1. Huang, David S. Regression and Econometric Methods. New York: John Wiley & Sons. 1970. pp. 127–147.
  2. Hazewinkel, Michiel, ed. "Bayesian approach to statistical problems", Encyclopedia of Mathematics, Springer. 2001.
  3. Amos Golan, George G. Judge, Douglas Miller. Maximum Entropy Econometrics: Robust Estimation with Limited Data. – John Wiley and Sons Ltd. Chichester, U.K., 1996.
  4. Kristofer Dougerti. Vvedenie v ekonometriku. — 2-e, per. s angl. — M.: INFRA-M, 2004. — 419 s.
  5. Ximing Wu. A Weighted Generalized Maximum Entropy Estimator with a Data-driven Weight // Entropy, 2009. no.11.
  6. Theil, Henri (1971). "Best Linear Unbiased Estimation and Prediction". Principles of Econometrics. New York: John Wiley & Sons. pp. 119–124. ISBN 0-471-85845-5.
  7. Lehmann, E. L.; Casella, G. (1998). Theory of Point Estimation (2nd ed.). Springer.
  8. Efron, B.; Tibshirani, R. (1993). An Introduction to the Bootstrap. Boca Raton, FL: Chapman & Hall/CRC.
  9. Popkov, Y.S.; Dubnov, Y.A.; Popkov, A.Y. New Method of Randomized Forecasting Using Entropy-Robust Estimation: Application to the World Population Prediction. // Mathematics, 2016, Vol. 4, Iss.1, p.1-16.
  10. Andrew Gelman. Bayes, Jeffreys, Prior Distributions and the Philosophy of Statistics // Statistical Science, vol.24, No.2, pp.176-178, 2009.
  11. Zellner A. Past and Recent Results on Maximal DataInformation Priors // Texhnical Report, Graduate School of Business, University of Chicago, 1996.
  12. Fink, Daniel (1997). "A Compendium of Conjugate Priors"
  13. R.D. Levin, M. Tribus. The maximum entropy formalism. MIT Press, 1979
  14. Yu. S. Popkov, Yu. A. Dubnov. Entropy-robust randomized forecasting under small sets of retrospective data // Automation and Remote Control. 2016, Volume 77, Issue 5, pp 839-854.
  15. Yu. S. Popkov. Soft Randomized Machine Learning // Doklady Mathematics, 2018, Vol. 98, No. 3, pp. 646–647.
  16. Fishman, George S. Monte Carlo : concepts, algorithms, and applications. — Springer, 1996.
  17. Rousseeuw, P. J., A. M. Leroy. Robust Regression and Outlier Detection. Wiley, 2003.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).