Pareto Set Reduction Based on Information about a Type-2 Fuzzy Preference Relation. Algorithm Justification

Cover Page

Cite item

Full Text

Abstract

A multicriteria choice problem is considered when preferences of a decision maker are described using a type-2 fuzzy binary relation. A mathematical justification of the algorithm for Pareto set reduction based on fuzzy quanta of information about preferences of a decision maker is presented. Optimization issues are discussed for practically important cases.

About the authors

Oleg V. Baskov

Saint Petersburg State University

Author for correspondence.
Email: o.baskov@spbu.ru

Candidate of Physical and Mathematical Sciences, Associate Professor

Russian Federation, Saint Petersburg

References

  1. Baskov O. V. 2022. Pareto set reduction based on information about a type-2 fuzzy preference relation. Algorithm description. Iskusstvennyi intellekt i prinyatie reshenii [Artificial intelligence and decision-making]. 3: 63-71.
  2. Noghin V. D. 2018. Reduction of the Pareto set: an axiomatic approach. Springer, 232 p.
  3. Baskov O. V., Noghin V. D. 2021. The Edgeworth – Pareto principle in the case of IT2F preference relation. Journal of Physics: Conference Series. 1801:1–5.
  4. Baskov O. V. 2022. Dual type-2 fuzzy cones and their application in multicriteria choice. Fuzzy Sets and Systems (in press).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).