О вычислительной эффективности извлечения знаний вероятностными алгоритмами

Обложка

Цитировать

Полный текст

Аннотация

В статье доказана вычислительная эффективность вероятностного подхода к извлечению знаний с помощью бинарной операции сходства. В дополнении к ранее доказанному автором результату о достаточности полиномиального числа гипотез о причинах исследуемого целевого свойства, в настоящей работе дана полиномиальная верхняя оценка на среднее время работы алгоритма порождения одного кандидата в гипотезы. Доказанный результат касается семейства алгоритмов, основанных на спаривающих цепях Маркова. Чтобы получить хорошую оценку на длину траектории (до попадания в эргодическое состояние) такой цепи потребовалось обогатить обучающую выборку добавлением столбцов-отрицаний для существующих бинарных признаков.

Об авторах

Дмитрий Вячеславович Виноградов

Федеральный исследовательский центр «Информатика и управление» РАН

Автор, ответственный за переписку.
Email: KRRGuest@yandex.ru

доктор физико-математических наук, ведущий научный сотрудник

Россия, Москва

Список литературы

  1. ДСМ-метод автоматического порождения гипотез: Логические и эпистемологические основания //Ред.: Финн В.К., Аншаков О.М.). М.: URSS. 2009. 432 c.
  2. Милль Дж.Ст. Система логики силлогистической и индуктивной: Изложение принципов доказательства в связи с методами научного исследования. Пер. с англ. Изд. 5. М.: URSS. 2011. 832 c.
  3. Гусакова С.М., Финн В.К. Сходства и правдоподобный вывод // Известия АН СССР. Сер. «Техническая кибернетика». 1987. № 5. C. 42–63.
  4. Ganter, Bernhard and Wille, Rudolf. Formal Concept Analysis: Mathematical Foundations. Berlin: Springer–Verlag. 1999. 284 p.
  5. Виноградов Д.В. Вероятностное порождения гипотез в ДСМ-методе с помощью простейших цепей Маркова // Научная и техническая информация. Сер. 2. 2012. № 9. C. 20–27.
  6. Кузнецов С.О. Быстрый алгоритм построения всех пересечений объектов из нижней полурешетки // Научная и техническая информация. Сер. 2. 1993. № 1. C. 17–20.
  7. Виноградов Д.В. Алгебраическое машинное обучение: упор на эффективность // Автоматика и телемеханика. 2022. № 6. С. 5–23.
  8. Кемени Дж., Снелл Дж. Конечные цепи Маркова. Пер. с англ. М.: Наука. 1970. 272 c.
  9. Виноградов Д.В. ВКФ-метод интеллектуального анализа данных: обзор результатов и открытых проблем // Искусственный интеллект и принятие решений. 2017. № 2. C. 9–16.
  10. Виноградов Д.В. Цепи Маркова, формула полной вероятности и рекуррентные соотношения // Научная и техническая информация. Сер. 2. 2023. № 2. С. 35–39.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».