Factors influencing the efficiency of building materials self-cleaning with photocatalytically active components

Cover Page

Cite item

Full Text

Abstract

Introduction. The use of building materials with photocatalytically active additives is considered as a promising solution to environmental and economic problems of the urban environment. In the field of building materials science the necessity of studying the microstructure of self-cleaning building materials and the influence of impurities on the efficiency of self-cleaning of materials with photocatalytically active additives is determined.Materials and methods. Red gypsum (production waste with photocatalytically active impurities), cement, building gypsum, microsilica, synthesized photocatalytically active titanium oxide – silicon oxide additive, and iron-based pigments were used. Tablet specimens of gypsum-cement-pozzolanic binder with various photocatalytically active components were made: photocatalyst additive, pigments, photocatalytically active oxide impurities. The microstructure of the specimens and the distribution of titanium and iron elements were studied using scanning electron microscopy. The efficiency of self-cleaning was determined by the change in the contact angle of a water drop on a surface coated with oleic acid.Results. The efficiency of self-cleaning of specimens with added and impurity photocatalytically active components was determined. The influence of added impurities on the structure of the material and the influence of the type and concentration of impurities on the efficiency of self-cleaning were revealed.Conclusions. Titanium oxide photocatalyst additive at a concentration of 4.4 % provides high self-cleaning efficiency, evenly distributed throughout the material without affecting the structure of the forming binder stone. Pigment (iron (III) oxide) provides sufficient self-cleaning efficiency at a concentration of 2–9 %, at concentrations of more than 2 % it is distributed unevenly, providing a small increase in self-cleaning efficiency indicators. With the joint introduction of titanium and iron oxides, deterioration in self-purification is observed due to the high degree of recombination of electron – hole pairs. Red gypsum with impurity oxides of titanium and iron has shown a high efficiency of self-cleaning, has a uniform distribution of impurities that do not have a clear effect on the structure of the material.

About the authors

P. I. Kiyko

South Ural State University (National Research University) (SUSU (NRU))

Email: mspolly22@mail.ru

T. N. Chernykh

South Ural State University (National Research University) (SUSU (NRU))

Email: chernykhtn@susu.ru
ORCID iD: 0000-0002-4288-2115

V. P. Plesovskikh

South Ural State University (National Research University) (SUSU (NRU))

Email: plessovpv@gmail.com

References

  1. Артемьев Ю.М., Рябчук В.К. Введение в гетерогенный фотокатализ. СПб. : 1999. 303 с.
  2. Li X., Simon U., Bekheet M.F., Gurlo A. Mineral-supported photocatalysts: a review of materials, mechanisms and environmental applications // Energies. 2022. Vol. 15. Issue 15. P. 5607. doi: 10.3390/en15155607
  3. Cundari T.R. Titanium chemistry // Computational Organometallic Chemistry. 2014. 448 p. doi: 10.1201/9781482290073
  4. Paolini R., Borroni D., Pedeferri M., Diamanti M.V. Self-cleaning building materials: The multifaceted effects of titanium dioxide // Construction and Building Materials. 2018. Vol. 182. Pp. 126–133. doi: 10.1016/j.conbuildmat.2018.06.047
  5. Gubareva E.N., Strokova V.V., Ogurtsova Y.N., Baskakov P.S., Singh L.P. Composition and properties of TiO2 sol to produce a photocatalytic composite material // Key Engineering Materials. 2020. Vol. 854. Pp. 45–50. doi: 10.4028/ href='www.scientific.net/kem.854.45' target='_blank'>www.scientific.net/kem.854.45
  6. Kumar S.G., Devi L.G. Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics // Journal of Physical Chemistry A. 2011. Vol. 115. Pp. 13211–13241. doi: 10.1021/jp204364a
  7. Rapsomanikis A., Papoulis D., Panagiotaras D., Kaplani E., Stathatos E. Nanocrystalline TiO2 and halloysite clay mineral composite films prepared by sol-gel method: synergistic effect and the case of silver modification to the photocatalytic degradation of basic blue-41 Azo Dye in water // Global Nest Journal. 2014. Vol. 16. Issue 3. Pp. 485–498. doi: 10.30955/gnj.001323
  8. Smirnova O.V., Grebenyuk A.G., Lobanov V.V. A quantum chemical study on the effect of titanium dioxide modification with non-metals on its spectral characteristics // Himia, Fizika ta Tehnologia Poverhni. 2020. Vol. 11. Issue 4. Pp. 539–546. doi: 10.15407/hftp11.04.539
  9. Diamanti M.V., Luongo N., Massari S., Lupica Spagnolo S., Daniotti B., Pedeferri M.P. Durability of self-cleaning cement-based materials // Construction and Building Materials. 2021. Vol. 280. P. 122442. doi: 10.1016/j.conbuildmat.2021.122442
  10. Hamidi F., Aslani F. TiO2-based photocatalytic cementitious composites: materials, properties, influential parameters, and assessment techniques // Nanomaterials. 2019. Vol. 9. Issue 10. P. 1444. doi: 10.3390/nano9101444
  11. Janus M., Bubacz K., Zatorska J., Kusiak-Nejman E., Czyżewski A., Morawski A.W. Preliminary studies of photocatalytic activity of gypsum plasters containing TiO2 co-modified with nitrogen and carbon // Polish Journal of Chemical Technology. 2015. Vol. 17. Issue 2. Pp. 96–102. doi: 10.1515/pjct-2015-0036
  12. Lapidus A., Korolev E., Topchiy D., Kuzmina T., Shekhovtsova S., Shestakov N. Self-cleaning cement-based building materials // Buildings. 2022. Vol. 12. Issue 5. P. 606. doi: 10.3390/buildings12050606
  13. Mukhametrakhimov R., Galautdinov A., Lukmanova L. Influence of active mineral additives on the basic properties of the gypsum cementpozzolan binder for the manufacture of building products // MATEC Web of Conferences. 2017. Vol. 106. P. 03012. doi: 10.1051/matecconf/201710603012
  14. Zając K., Janus M., Morawski A. Improved self-cleaning properties of photocatalytic gypsum plaster enriched with glass fiber // Materials. 2019. Vol. 12. Issue 3. P. 357. doi: 10.3390/ma12030357
  15. Zhao A., Yang J., Yang E.-H. Self-cleaning engineered cementitious composites // Cement and Concrete Composites. 2015. Vol. 64. Pp. 74–83. doi: 10.1016/j.cemconcomp.2015.09.007
  16. Jimenez-Relinque E., Rodriguez-Garcia J.R., Castillo A., Castellote M. Characteristics and efficiency of photocatalytic cementitious materials: Type of binder, roughness and microstructure // Cement and Concrete Research. 2015. Vol. 71. Pp. 124–131. doi: 10.1016/j.cemconres.2015.02.003
  17. Лабузова М.В., Балицкий Д.А., Огурцова Ю.Н. Определение влияния неорганического пигмента на процесс самоочищения цементных образцов с диоксидом титана // IX Международный Молодежный Форум “Образование. Наука. Производство” : cб. тр. конф. Белгород. 2017. С. 761–764. URL: https://elibrary.ru/item.asp?id=37149150
  18. Huang C., Hsieh W., Pan J., Chang S. Characteristic of an innovative TiO2/Fe0 composite for treatment of Azo Dye // Separation and Purification Technology. 2007. Vol. 58. Issue 1. Pp. 152–158. doi: 10.1016/j.seppur.2007.07.034
  19. Lezner M., Grabowska E., Zaleska A. Preparation and photocatalytic activity of iron-modified titanium dioxide photocatalyst // Physicochemical Problems of Mineral Processing. 2012. Vol. 48. Issue 1. Pp. 193–200.
  20. Pal B., Sharon M., Nogami G. Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties // Materials Chemistry and Phy-sics. 1999. Vol. 59. Issue 3. Pp. 254–261. doi: 10.1016/s0254-0584(99)00071-1
  21. García-Muñoz P., Pliego G., Zazo J.A., Bahamonde A., Casas J.A. Ilmenite (FeTiO3) as low cost catalyst for advanced oxidation processes // Journal of Environmental Chemical Engineering. 2016. Vol. 4. Issue 1. Pp. 542–548. doi: 10.1016/j.jece.2015.11.037
  22. Sariman S., Krisnandi Y.K., Setiawan B. Anatase TiO2 Enrichment from Bangka ilmenite (FeTiO3) and Its photocatalytic test on degradation of Congo red // Proceedings of the Advanced Materials Research. 2013. Vol. 789. Pp. 538–544. doi: 10.4028/ href='www.scientific.net/AMR.789.538' target='_blank'>www.scientific.net/AMR.789.538
  23. Smith Y.R., Joseph A.R.K., (Ravi) Subramanian V., Viswanathan B. Sulfated Fe2O3–TiO2 synthesized from ilmenite ore: A visible light active photocatalyst // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010. Vol. 367. Issue 1-3. Pp. 140–147. doi: 10.1016/j.colsurfa.2010.07.001
  24. Torres-Luna J.A., Sanabria N.R., Carriazo J.G. Powders of iron(III)-doped titanium dioxide obtained by direct way from a natural ilmenite // Powder Technology. 2016. Vol. 302. Pp. 254–260. doi: 10.1016/j.powtec.2016.08.056
  25. Avdin V.V., Bulanova A.V., Asilbekova A.A., Ilkaeva M.V. Destruction of some dyes on composite photocatalysts based on SiO2/TiO2 Oxides // Bulletin of the South Ural State University series “Chemistry” 2020. Vol. 12. Pp. 98–107. doi: 10.14529/chem200305.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).