Influence of Heat Treatment on Phase and Structure Formation and Magnetic Properties of Soft Magnetic Alloy 80NKhS Manufactured by Additive Technology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The evolution of the structure and phase composition of the soft magnetic alloy 80NKhS, produced by selective laser melting and annealed at different temperatures, was studied by light and electron microscopy, X-ray spectral and X-ray structural analyses. It has been established that a weakening of structural anisotropy and an increase in the average grain size occurs only at temperatures of 1250°C, associated with the oxides of Al, Ti, Si, Mn, Cr and nickel silicide previously formed during additive alloying. These phases have high thermal stability and inhibit grain growth, limiting the magnetic permeability of the alloy. To achieve the required level of magnetic properties, the soft magnetic alloy 80NKhS, manufactured by the additive method, must be annealed at higher temperatures than specified in GOST 10160–75.

About the authors

T. V. Knyazyuk

NRC “Kurchatov Institute” – CRISM “Prometey”

Author for correspondence.
Email: npk-3@mail.ru
Cand Sc. (Eng) 49 Shpalernaya St, 191015 St Petersburg, Russian Federation

L. V. Mukhamedzyanova

NRC “Kurchatov Institute” – CRISM “Prometey”

Email: npk-3@mail.ru
49 Shpalernaya St, 191015 St Petersburg, Russian Federation

N. V. Yakovleva

NRC “Kurchatov Institute” – CRISM “Prometey”

Email: npk-3@mail.ru
49 Shpalernaya St, 191015 St Petersburg, Russian Federation

S. A. Manninenn

NRC “Kurchatov Institute” – CRISM “Prometey”

Email: npk-3@mail.ru
49 Shpalernaya St, 191015 St Petersburg, Russian Federation

A. S. Zhukov

NRC “Kurchatov Institute” – CRISM “Prometey”

Email: npk-3@mail.ru
Dr Sc. (Eng) 49 Shpalernaya St, 191015 St Petersburg, Russian Federation

V. V. Bobyr

NRC “Kurchatov Institute” – CRISM “Prometey”

Email: npk-3@mail.ru
49 Shpalernaya St, 191015 St Petersburg, Russian Federation

P. A. Kuznetsov

NRC “Kurchatov Institute” – CRISM “Prometey”

Email: npk-3@mail.ru
Dr Sc. (Eng) 49 Shpalernaya St, 191015 St Petersburg, Russian Federation

References

  1. Касаткин Г. С., Федотов В. В. Исследование свойств магнитных материалов. – М.: ММИТ, 2008.
  2. ГОСТ 10160–75. Сплавы прецизионные магнитно-мягкие. Технические условия. – М.: Изд- во стандартов, 1975. – 49 с.
  3. Преображенский А. А., Бишард Е. Г. Магнитные материалы и элементы. Учебник. Изд. 3-е. – М.: Высшая. школа, 1986. – 352 с.
  4. Périgo E. A., Jacimovic J., García Ferré F., Scherf L. M. Additive Manufacturing of Magnetic Materials // Additive Manufacturing. – 2019. – V. 30. – P. 100870. https://doi.org/10.1016/j.addma.2019.100870
  5. Additive manufacturing of soft magnetic materials and components / D. Goll et al. // Additive Manufacturing. – 2019. – V. 27. – P. 428–429. https://doi.org/10.1016/j.addma.2019.02.021
  6. Laser Additive Manufacturing of Magnetic Materials. JOM: the journal of the Minerals / C. Mikler et al. // Metals & Materials Society. – 2017. – V. 3. – P. 532–543. https://doi.org/10.1007/s11837-017-2257-2
  7. Tuning the phase stability and magnetic properties of laser additively processed Fe–30%Ni soft magnetic alloys / C. Mikler et al. // Materials Letters. – 2017. – V. 199. – P. 88–92. https://doi.org/10.1016/j.matlet.2017.04.054
  8. Relationship between laser energy input, microstructures and magnetic properties of selective laser melted Fe–6.9%wt Si soft magnets / M. Garibaldi et al. // Materials Characterization. – 2018. – V. 143. – P. 144–151. https://doi.org/10.1016/j.matchar.2018.01.016
  9. Shishkovsky I. V. Peculiarities of selective laser melting process for permalloy powder // Materials Letters. – 2006. – V. 171. – P. 208–211. https://doi.org/10.1016/j.matlet.2016.02.099
  10. Zhang B., Fenineche N. E., Liao H., Coddet C. Magnetic properties of in-situ synthesized FeNi3 by selective laser melting Fe–80%Ni powders // Journal of Magnetism and Magnetic Materials. – 2013. – V. 336. – P. 49–54. https://doi.org/10.1016/j.jmmm.2013.02.014
  11. Zhang B., Fenineche N. E., Liao H., Coddet C. Microstructure and Magnetic Properties of Fe–Ni Alloy Fabricated by Selective Laser Melting Fe/Ni Mixed Powders // JMST. – 2013. – V. 29, Is. 8. – P. 757–760. https://doi.org/10.1016/j.jmst.2013.05.001
  12. Mazeeva A. K., et al. Magnetic properties of Fe–Ni permalloy produced by selective laser // Journal of Alloys and Compounds. – 2020. – V. 814. – P. 152315. https://doi.org/10.1016/j.jallcom.2019.152315
  13. Staritsyn M. V., Kuznetsov P. A., Petrov S. N., et al. Composite Structure as a Strengthening Factor of Stainless Austenitic Chromium–Nickel Additive Steel // Phys. Metals Metallogr. – 2020. – N 121. – P. 337–343. https://doi.org/10.1134/S0031918X20040146
  14. Saedi K., Lofaj F., Kevetkova L., Shen Z. Austenitic stainless steel strengthened by the in-situ formation of oxide nano inclusions // RSC Adv. – 2015. – N 5. – P. 20747–20750.
  15. Flemings M. K. Solidification processes / Ed. A. A. Zhukov and B. V. Rabinovich. – Moscow: Mir, 1977.
  16. Sames W. J., List F. A., Pannala S., Dehoff R. R., Babu S. S. The metallurgy and processing science of metal additive manufacturing // Int Mater Rev. – 2016. – N 61. – P. 315–360. https://doi.org/10.1080/09506608.2015.1116649
  17. Song B., Dong S., Liu Q., Liao H., Coddet C. Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior // Mater Des. – 2014. – N 54. – P. 727–733. https://doi.org/10.1016/j.matdes.2013.08.085
  18. Kanagarajah P., Brenne F., Niendorf T., Maier H. J. Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading // Mater. Sci. Eng. A. – 2013. – N 588. – P. 188–195. https://doi.org/10.1016/j.msea.2013.09.025
  19. Hengsbach F., Koppa P., Duschik K., Holzweissig M. J., Burns M., Nellesen J., Tillmann W., Tröster T., Hoyer K.-P., Schaper M. Duplex stainless steel fabricated by selective laser melting. Microstructural and mechanical properties // Mater Des. – 2017. – N 133. – P. 136–142. https://doi.org/10.1016/j.matdes.2017.07.046
  20. Suzuki H. Weldability of Modern Structural Steels in Japan // Transactions of the Iron and Steel Institute of Japan. – 1983. – N 23. – P. 189–204. https://doi.org/10.2355/isijinternational1966.23.189
  21. Liu F., Lin X., Yang G., Song M., Chen J., Huang W. Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy // Opt Laser Technol. – 2011. – N 43. – P. 208–213. https://doi.org/10.1016/j.optlastec.2010.06.015
  22. Bertsch K. M., De Bellefon G. M., Kuehl B., Thoma D. J. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L // Acta Materialia. – 2020. – N 199. – P. 19–33. https://doi.org/10.1016/j.actamat.2020.07.063
  23. Deng P., Yin H., Song M., Li D., Zheng Yu., Prorok B. C., Lou X. On the Thermal Stability of Dislocation Cellular Structures in Additively Manufactured Austenitic Stainless Steels // Roles of Heavy Element Segregation and Stacking Fault Energy. Jom. – 2020. – N 72. – P. 4232–4243. https://doi.org/10.1007/s11837-020-04427-7
  24. Zhukov A. S., Manninen S. A., Tit M. A., Knyazyuk T. V., Kuznetsov P. A. Investigation of the structure and magnetic properties of an additive soft magnetic alloy 80NKhS // Fizika metallov i metallovedenie. – 2023. – No 4. – P. 353–359.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).