Residual stress estimation in crystalline phases of high-entropy alloys of the AlxCoCrFeNi system

Cover Page

Cite item

Abstract

Introduction. All plastically deformed alloys are characterized by crystal defects that increase the internal energy of the system. These defects also result in residual stresses that have a complex effect on the material properties. Macrostresses are often the most critical and can lead to warpage, reduced corrosion resistance, and changes in material strength characteristics. The purpose of this work is to assess the residual stresses of the primitive cubic phase of high entropy alloys Al0.6CoCrFeNi and AlCoCrFeNi. Research methods. The crystal structure of the alloys is studied using the method of X-ray diffraction analysis. Experiments on X-ray diffraction analysis were carried out at the Siberian Center for Synchrotron and Terahertz Radiation on a VEPP-4 (Novosibirsk, INF SB RAS, 5-A line «X-ray microscopy and tomography»). Studies using synchrotron radiation were carried out in the transmission mode. The evaluation of the residual macrostresses of the crystalline phases of the alloys was based on the analysis of the change in the shape of the diffraction rings with a change in the azimuth angle (c). Materials. The objects of research are ingots of high-entropy alloys Al0.6CoCrFeNi and AlCoCrFeNi. The ingots were obtained from pure metals by argon arc melting with cooling on a copper plate. To conduct further studies, cylindrical samples are cut from the ingots, which were subjected to plastic deformation according to the uniaxial compression scheme. Results and discussion. The obtained results indicate that the Al0.6CoCrFeNi alloy is characterized by higher macrostresses than the AlCoCrFeNi alloy. The residual deformation of the B2 phase lattice of AlCoCrFeNi alloy along the direction [100] is 2.5% at an external load of 2,500 MPa. The distortion value of the lattice of this phase for the alloy Al0.6CoCrFeNi is equal to 5.5% under similar external conditions. In addition, the plastic deformation of the Al0.6CoCrFeNi HEA did not lead to its destruction. This allows concluding that the increased ductility of this alloy is associated not only with the presence of a phase with a FCC lattice, but also with an increased compliance of the phase with a primitive lattice.

About the authors

I. V. Ivanov

Email: i.ivanov@corp.nstu.ru
Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, i.ivanov@corp.nstu.ru

A. B. Yurgin

Email: yurgin2012@yandex.ru
Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, yurgin2012@yandex.ru

I. E. Nasennik

Email: goga.mer@mail.ru
Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, goga.mer@mail.ru

K. E. Kuper

Email: k.e.kuper@inp.nsk.su
Ph.D. (Physics and Mathematics), Budker Institute of Nuclear Physics of the Siberian Branch of the RAS, 11, Ac. Lavrentieva ave., Novosibirsk, 630090, Russian Federation; Federal Research Center Boreskov Institute of Catalysis, 11, Ac. Nicolskiy ave., Koltsovo, 630559, Russian Federation, k.e.kuper@inp.nsk.su

References

  1. Обзор исследований сплавов, разработанных на основе энтропийного подхода / З.Б. Батаева, А.А. Руктуев, И.В. Иванов, А.Б. Юргин, И.А. Батаев // Обработка металлов (технология, оборудование, инструменты). – 2021. – Т. 23, № 2. – С. 116–146. – doi: 10.17212/1994-6309-2021-23.2-116-146.
  2. Tensile and shear loading of four fcc high-entropy alloys: a first-principles study / X. Li, S. Schönecker, W. Li, L.K. Varga, D.L. Irving, L. Vitos // Physical Review B. – 2018. – Vol. 97 (9). – P. 1–9. – doi: 10.1103/PhysRevB.97.094102.
  3. Горбань В.Ф., Крапивка Н.А., Фирстов С.А. Высокоэнтропийные сплавы – электронная концентрация – фазовый состав – параметр решетки – свойства // Физика металлов и металловедение. – 2017. – Т. 118, № 10. – С. 1017–1029. – doi: 10.7868/S0015323017080058.
  4. Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // Физика металлов и металловедение. – 2020. – Т. 121, № 8. – С. 807–841. – doi: 10.31857/S0015323020080094.
  5. George E.P., Raabe D., Ritchie R.O. High-entropy alloys // Nature Reviews Materials. – 2019. – Vol. 4. – P. 515–534. – doi: 10.1038/s41578-019-0121-4.
  6. Sharma P., Dwivedi V.K., Dwivedi S.P. Development of high entropy alloys: a review // Materials Today: Proceedings. – 2021. – Vol. 43. – P. 502–509. – doi: 10.1016/j.matpr.2020.12.023.
  7. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study / W.M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, B.J. Lee // Npj Computational Materials. – 2018. – Vol. 4 (1). – P. 1–9. – doi: 10.1038/s41524-017-0060-9.
  8. Strength can be controlled by edge dislocations in refractory high-entropy alloys / C. Lee, F. Maresca, R. Feng, Y. Chou, T. Ungar, M. Widom, K. An, J.D. Poplawsky, Y.C. Chou, P.K. Liaw, W.A. Curtin // Nature Communications. – 2021. – Vol. 12 (1). – P. 1–8. – doi: 10.1038/s41467-021-25807-w.
  9. Ikeda Y., Grabowski B., Körmann F. Ab initio phase stabilities and mechanical properties of multicomponent alloys: a comprehensive review for high entropy alloys and compositionally complex alloys // Materials Characterization. – 2019. – Vol. 147. – P. 464–511. – doi: 10.1016/j.matchar.2018.06.019.
  10. Effect of Sc and Y addition on the microstructure and properties of HCP-structured high-entropy alloys / T. Huang, H. Jiang, Y. Lu, T. Wang, T. Li // Applied Physics A: Materials Science and Processing. – 2019. – Vol. 125 (3). – P. 1–5. – doi: 10.1007/s00339-019-2484-1.
  11. Predictive multiphase evolution in Al-containing high-entropy alloys / L.J. Santodonato, P.K. Liaw, R.R. Unocic, H. Bei, J.R. Morris // Nature Communications. – 2018. – Vol. 9 (1). – P. 1–10. – doi: 10.1038/s41467-018-06757-2.
  12. Wang W.R., Wang W.L., Yeh J.W. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures // Journal of Alloys and Compounds. – 2014. – Vol. 589. – P. 143–152. – doi: 10.1016/j.jallcom.2013.11.084.
  13. Memon B.A., Yao H. High-pressure induced phase transitions in high-entropy alloys: a review // Entropy. – 2019. – Vol. 21 (3). – P. 88–92. – doi: 10.3390/e21030239.
  14. Applications of high-pressure technology for high-entropy alloys: a review / W. Dong, Z. Zhou, M. Zhang, Y. Ma, P. Yu, P.K. Liaw, G. Li // Metals. – 2019. – Vol. 9 (8). – P. 2–16. – doi: 10.3390/met9080867.
  15. Microstructure and mechanical properties of AlCoCrFeNi high entropy alloys produced by spark plasma sintering / P.F. Zhou, D.H. Xiao, Z. Wu, M. Song // Materials Research Express. – 2019. – Vol. 6 (8). – doi: 10.1088/2053-1591/ab2517.
  16. Структура высокоэнтропийного сплава AlCoCrFeNi после деформации по схеме одноосного сжатия и термической обработки / И.В. Иванов, К.И. Эмурлаев, А.А. Руктуев, А.Г. Тюрин, И.А. Батаев // Известия вузов. Черная металлургия. – 2021. – Т. 64, № 10. – С. 736–746. – doi: 10.17073/0368-0797-2021-10-736-746.
  17. Feuerbacher M. Dislocations and deformation microstructure in a B2-ordered Al28Co20Cr11Fe15Ni26 high-entropy alloy // Scientific Reports. – 2016. – Vol. 6. – P. 1–9. – doi: 10.1038/srep29700.
  18. The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys / Y. Ma, B. Jiang, C. Li, Q. Wang, C. Dong, P.K. Liaw, F. Xu, L. Sun // Metals. – 2017. – Vol. 7 (2). – doi: 10.3390/met7020057.
  19. The effects of annealing at different temperatures on microstructure and mechanical properties of cold-rolled Al0.3CoCrFeNi high-entropy alloy / Z. Zhu, T. Yang, R. Shi, X. Quan, J. Zhang, R. Qiu, B. Song, Q. Liu // Metals. – 2021. – Vol. 11 (6). – doi: 10.3390/met11060940.
  20. Русаков А.А. Рентгенография металлов. – М.: Атомиздат, 1977. – 479 с.
  21. Application of different diffraction peak profile analysis methods to study the structure evolution of cold-rolled hexagonal α-titanium / I.V. Ivanov, D.V. Lazurenko, A. Stark, F. Pyczak, A. Thömmes, I.A. Bataev // Metals and Materials International. – 2020. – Vol. 26 (1). – P. 83–93. – doi: 10.1007/s12540-019-00309-z.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».