Chemical composition, structure and microhardness of multilayer high-temperature coatings

Cover Page

Cite item

Abstract

Introduction. Plasma spraying is one of the modern and effective methods for coatings application for various purposes and compositions. With the help of thermal plasma flows, it is possible to spray almost any powder materials (ceramic, metal, metal-ceramic). Plasma spraying of multilayer protective coatings can be successfully used to increase the durability of pierced mandrels, which are the main tool in the production of hollow billets. The purpose of this work is to study the chemical composition, structure, and microhardness of multilayer high-temperature coatings of two different compositions deposited by plasma spraying, which are supposed to be used to increase the durability of pierced mandrels. Materials and research methods. The deposition of multilayer coatings of two compositions was carried out on a plasma-powder spraying unit with contact excitation of an arc discharge UPN-60KM TSP2017. Coatings were obtained by sequential deposition of three layers with different powder compositions. After deposition of all three coating layers, oxidative annealing was carried out at a temperature of 900°C to form a dense scale layer of FeO + Fe2O3 + Fe3O4 on the surface. The chemical composition of the coatings was studied by X-ray microanalysis using a TESCAN scanning electron microscope with an OXFORD attachment. The microstructure of the coatings was studied using a NEOPHOT metallographic microscope. Phase X-ray diffraction analysis was performed on a SHIMADZU diffractometer in Kα chromium radiation. Microhardness was measured on a LEICA hardness tester at a load of 50 g. Results and discussion. The nature of the distribution of chemical elements over the thickness of the coating, consisting of four layers, is established: an inner metal layer that provides protection against high-temperature corrosion; a transitional metal layer designed to equalize the thermal properties between the layers; α-Fe metal oxide layer and iron oxides and external thermal barrier oxide layer FeO + Fe2O3 + Fe3O4. Coatings are characterized by a non-uniform distribution of structural components and microhardness over its thickness. The microhardness of the inner layer reaches 1,400 HV0.05, the transition layer is 800 HV0.05, and the metal oxide layer is 300 HV0.05.

About the authors

N. B. Pugacheva

Email: nat@imach.uran.ru
D.Sc. (Engineering), Associate Professor, Institute of Engineering Science, Ural Branch, Russian Academy of Sciences, 34 Komsomolskaya str., Yekaterinburg, 620049, Russian Federation, nat@imach.uran.ru

Y. V. Nikolin

Email: sf.ekb@mail.ru
Solid Flame Ltd., Lenin Ave., 54, box. 5, Yekaterinburg, 620075, Russian Federation, sf.ekb@mail.ru

T. M. Bykova

Email: tatiana_8801@mail.ru
Ph.D. (Engineering), Institute of Engineering Science, Ural Branch, Russian Academy of Sciences, 34 Komsomolskaya str., Yekaterinburg, 620049, Russian Federation, tatiana_8801@mail.ru

L. S. Goruleva

Email: sherlarisa@yandex.ru
Institute of Engineering Science, Ural Branch, Russian Academy of Sciences, 34 Komsomolskaya str., Yekaterinburg, 620049, Russian Federation, sherlarisa@yandex.ru

References

  1. Газотермическое напыление: учебное пособие / Л.Х. Балдаев, В.Н. Борисов, В.А. Вахалин, Г.И. Ганноченко, А.Е. Затока, Б.М. Захаров, А.В. Иванов, В.М. Иванов, В.И. Калита, В.В. Кудинов, А.Ф. Пузряков, Ю.П. Сборщиков, Б.Г. Хамицев, Э.Я. Школьников, В.М. Ярославцев; под общ. ред. Л.Х. Балдаева. – М.: Маркет ДС, 2007. – 344 с. – ISBN 978-5-7958-0146-92.
  2. Development of ion-plasma refractory metallic layers of heat-insulating coatings for cooled turbine rotor blades / S.А. Budinovsky, S.A. Muboyadzhyan, A.M. Gayamov, P.V. Matveev // Metal Science and Heat Treatment. – 2014. – Vol. 55. – P. 652–657. – doi: 10.1007/s11041-014-9684-2.
  3. Tarasenko Yu.P., Tsareva N.N., Berdnik O.B. The structure and physical-mechanical properties of the heat-resistant Ni-Co-Cr-Al-Y intermetallic coating obtained using rebuilt plasma equipment // Thermophysics and Aeromechanics. – 2014 – Vol. 1, N 5. – P. 641–650. – doi: 10.1134/S0869864314050138.
  4. Influence of modifying nanoadditives on the properties of a multilayer composite coating obtained by laser surfacing / A.N. Cherepanov, A.M. Orishich, A.G. Malikov, V.O. Drozdov, V.E. Ovcharenko, A.P. Pshenichnikov // The Physics of Metals and Metallography. – 2019. – Vol. 120, iss. 1. – P. 101–106. – doi: 10.1134/S0031918X190100225.
  5. Automatic remelting and enhanced mechanical performance of a plasma sprayed NiCrBSi coating / L. Chen, H. Wang, C. Zhao, S. Lu, Z. Wang, J. Sha, S. Chen, L. Zhang // Surface and Coatings Technology. – 2019. – Vol. 369. – P. 31–43. – doi: 10.1016/j.surfcoat.2019.04.052.
  6. Гузанов Б.Н., Косицын С.В., Пугачева Н.Б. Упрочняющие защитные покрытия в машиностроении. – Екатеринбург: УрО РАН, 2004. – 244 с. – ISBN 5-7691-1405-3.
  7. Shevchenko O.I., Trekin G.E., Farber V.M. Distribution of chemical elements in structural components of a facing of a self-fluxing nickel alloy // Metal Science and Heat Treatment. – 1997. – Vol. 39, iss. 6. – P. 233–235. – doi: 10.1007/bf02467225.
  8. Otsubo F., Era H., Kishitake K. Structure and phases in nickel-base self-fluxing alloy coating containing high chromium and boron // Journal of Thermal Spray Technology. – 2000. – Vol. 9, iss. 1. – P. 107–113. – doi: 10.1361/105996300770350131.
  9. Du H., Lee S.W., Shin J.H. Study on porosity of plasma-sprayed coatings by digital image analysis method // Journal of Thermal Spray Technology. – 2005. – Vol. 14, iss. 4. – P. 452–461. – doi: 10.1361/105996305X76450.
  10. Porosity and its significance in plasma-sprayed coatings / J.G. Odhiambo, W. Li, Y. Zhao, C. Li // Coatings. – 2019. – Vol. 9 (7). – P. 460–479. – doi: 10.3390/coatings9070460.
  11. Zhou C.G. Yu Q.H. Nanostructured thermal barrier coatings // Thermal Barrier Coatings. – Cambrige, UK: Woodhead Publishing, 2011. – P. 75–96.
  12. Влияние температуры оплавления на структуру и свойства самофлюсующихся покрытий на основе никеля / Е.Е. Корниенко, А.А. Никулина, А.Г. Баннов, В.И. Кузьмин, М. Мильдебрах, В.А. Безрукова, А.А. Жойдик // Обработка металлов (технология, оборудование, инструменты). – 2016. – № 4 (73). – С. 52–62. – doi: 10.17212/1994-6309-2016-4-52-62.
  13. Matthews S., Schweizer M. Optimization of arc-sprayed Ni-Cr-Ti coatings for high temperature corrosion applications // Journal of Thermal Spray Technology. – 2013. – Vol. 22, iss. 4. – P. 538–550. – doi: 10.1007/s11666-013-9914-y.
  14. Гузанов Б.Н., Пугачева Н.Б., Быкова Т.М. Эрозионная стойкость комбинированного многослойного покрытия для защиты ответственных деталей современных газово-турбинных двигателей // Diagnostics, Resource and Mechanics of Materials and Structures. – 2021. – № 2. – С. 6–21. – doi: 10.17804/2410-9908.2021.2.006-021.
  15. Sivakumar R., Mordike B.L. High temperature coatings for gas turbine blades: a review // Surface and Coatings Technology. – 1989. – Vol. 37, iss. 2. – P. 139–160. – doi: 10.1016/0257-8972(89)90099-6.
  16. Пугачева Н.Б. Современные тенденции развития жаростойких покрытий на основе алюминидов железа, никеля и кобальта // Diagnostics, resource and mechanics of materials and structures. – 2015. – № 3. – С. 51–82. – doi: 10.17804/2410-9908.2015.3.051-082.
  17. Мубояджян С.А., Лесников В.П., Кузнецов В.П. Комплексные защитные покрытия турбинных лопаток авиационных ГТД. – Екатеринбург: Квист, 2008. – 208 с. – ISBN 5-900474-60-7.
  18. Гузанов Б.Н., Обабков Н.В., Мигачева Г.Н. Разработка и исследование многослойных комбинированных покрытий высокотемпературного назначения // Sciences of Europe. – 2017. – № 16-1 (16). – Р. 83–88.
  19. Microstructural design of hardfacing Ni-Cr-B-Si-C alloys / I. Hemmati, V. Ocelík, J.T.M. De Hosson, R.M. Huizenga // Acta Materialia. – 2013. – Vol. 61, iss. 16. – P. 6061–6070. – doi: 10.1016/j.actamat.2013.06.048.
  20. Formation of a Cr3C2/Ni-Cr alloy layer by an electron beam cladding method and evaluation of the layer properties / J. Morimoto, N. Abe, F. Kuriyama, M. Tomie // Vacuum. – 2001. – Vol. 62, iss. 2–3. – P. 203–210. – doi: 10.1016/S0042-207X(00)00439-5.
  21. Structure, phase composition, and wear mechanisms of plasma-sprayed Nicrsib–20 wt.% TiB2 coating / A.P. Umanskii, A.E. Terentiev, A.M. Kovalchenko, M.S. Storozhenko, I.V. Hussainova, M.M. Antonov // Powder Metallurgy and Metal Ceramics. – 2015. – Vol. 53, iss. 11–12. – P. 663–671. – doi: 10.1007/s11106-015-9661-3.
  22. Iida S., Hidaka Y. Influence of iron oxide of carbon steel on lubricating properties in seamless pipe hot rolling and the effectiveness of borax application // Tetsu-to-Hagane / Journal of the Iron and Steel Institute of Japan. – 2010. – Vol. 96, iss. 9. – Р. 550–556. – doi: 10.2355/tetsutohagane.96.550.
  23. Герасимов Ю.Л., Авдеев С.В., Бобарикин Ю.Л. Исследование влияния особенностей оксидированного покрытия прошивных оправок на их эксплуатационную стойкость // Черные металлы. – 2017. – № 7. – С. 46–49.
  24. Вавилкин Н.М., Бухмиров В.В. Прошивная оправка. – М.: МИСиС, 2000. – 128 с. – ISBN 5-87623-052-9.
  25. Oxidation behavior and mechanism of porous nickel-based alloy between 850 and 1000 °C / Y. Wang, Y. Liu, H. Tang, W. Li, C. Han // Transactions of Nonferrous Metals Society of China. – 2017. – Vol. 27, iss. 7. – P. 1558–1568. – doi: 10.1016/S1003-6326(17)60177-8.
  26. Темлянцев М.В., Осколкова Т.Н. Трещинообразование в процессах нагрева и охлаждения сталей и сплавов. – М.: Флинта: Наука, 2005. – 195 с. – ISBN 5-89349-913-1.
  27. Сазоненко И.О., Земцов В.А., Юрчак А.Н. К вопросу повышения стойкости оправок прошивных станов // Литье и металлургия. – 2012. – № 4. – С. 135–138.
  28. Толмачев В.С., Степанов А.И., Губин Ю.Г. Освоение прошивки гильз на стане конструкции ЭЗТМ // Сталь. – 2009. – № 7. – С. 56–58.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».