Formation of Hardening Coatings based on Fe-Cr-Si-B-C Alloys withHigh Glass-Forming Ability by Laser-Plasma Methods

Cover Page

Cite item

Full Text

Abstract

Introduction. In recent years, the fundamentals of the laser-plasma methods for surface modification and micropowder coating application have been developed in the Institute of Laser Physics. The methods are based on the use of optical pulsed discharge plasma. The discharge is ignited by the repetitive laser pulses focused on the surface of the workpiece in a gas or a gas-powder stream. The high pulse repetition frequency of 10-120 kHz is achieved using the generator-amplifier CO2-laser system with the half-height pulse duration set τ = 150-200 ns. The search for other timely applications of these methods is currently ongoing. An interest in the obtaining of amorphous metallic coatings on the surface of structural materials is yet to wane after the decades of intense research done by scientists all over the world due to the outstanding physical, chemical and mechanical properties of such coatings. The purpose of this work is to obtain the hardening coatings based on the Fe-Cr-Si-B-C alloys with high glass-forming ability and to investigate the possibility of obtaining a coating with an amorphous structure using laser-plasma methods. Theory. As the surface of the metallic alloys was under the intense thermal influence of the pulsed laser plasma, the numerical modeling was applied to determine the dependence of amorphized layer’;s thickness on the material properties, as well as in relation to the parameters of the laser irradiation and the laser plasma. Experimental methods. The experiments are carried out in two stages using the installation designed at the Institute: (1) at first, the uniform coatings were prepared on the surface of steel substrates using the laser-plasma application method incorporating the powders of the AP-FeCr4Mn2Si2B4V1 (Fe71.75Cr3.33Si3.54B14.10C4.81Mn1.74V0.73) and AP-FeCr11Mn4SiB (Fe66.8Cr10.79Si5.3B11.42C2.85Mn2.84) grades; (2) then, the surface coatings underwent the rapid laser-plasma modification to ensure the remelting of the thin surface layer. Results and discussion. The numerical methods applied have proven the theoretical possibility of obtaining an amorphous layer of about 3-5 μm thick, based on the Fe-Si-B alloys. As a result, the parameter range required for the successful laser-plasma modification is determined. The hardness of the obtained coatings is measured and its thickness has been determined in dependence on the application parameters. The hardness is measured using the nanoindentation method and equals 12 ± 1 GPa in regards to the coating incorporating the powder AP-FeCr4Mn2Si2B4V1 and 8.5 ± 0.7 GPa in case of the powder AP-FeCr11Mn4SiB; the thickness of the coatings is up to 0.1-0.4 mm. Using optical microscopy, SEM and X-ray diffraction the structure of the coatings is investigated. It is demonstrated that the laser-plasma modification of the coatings on the surface leads to the structure refinement of the surface layer. The characteristic size of the crystallites is 0.5-1 μm. In addition, the hardness of the remelted layer is increased up to 13.8 ± 0.7 GPa for the AP-FeCr4Mn2Si2B4V1 alloy and up to 10.5 ± 0.5 GPa for the AP-FeCr11Mn4SiB alloy. Using SEM and X-ray diffraction the structure of the coatings is investigated. The amorphous phase in the remelted coating layer is not detected, which might be due to an increase in the critical cooling rate during the laser amorphization as compared to the traditional methods of melt quenching.

About the authors

M. N. Khomyakov

Email: mnkhomy@laser.nsc.ru
Junior researcher, Institute of Laser Physics of the Siberian Branch of the RAS, mnkhomy@laser.nsc.ru

P. A. Pinaev

Email: pavel_academ@mail.ru
Institute of Laser Physics of the Siberian Branch of the RAS, pavel_academ@mail.ru

P. A. Statsenko

Email: statsenkopa@laser.nsc.ru
Institute of Laser Physics of the Siberian Branch of the RAS, statsenkopa@laser.nsc.ru

I. B. Miroshnichenko

Email: mib383@gmail.com
Ph.D. (Physics and Mathematics), Institute of Laser Physics of the Siberian Branch of the RAS, mib383@gmail.com

G. N. Grachev

Email: grachev@laser.nsc.ru
Institute of Laser Physics of the Siberian Branch of the RAS, grachev@laser.nsc.ru

References

  1. Chen H.S. Glassy metals // Reports on Progress in Physics. – 1980. – Vol. 43, iss. 4. – P. 353–432. – doi: 10.1088/0034-4885/43/4/001.
  2. Образование аморфной структуры в сплавах на основе железа при обработке поверхности излучением лазера / Г.Г. Бородина, Ч.В. Копецкий, В.С. Крапошин и др. // Доклады Академии наук СССР. – 1981. – Т. 259, № 4. – С. 826–829.
  3. Аморфизация поверхности кристаллических мишеней из сплавов на основе железа при периодическом облучении импульсами CO2-лазера / О.В. Абрамов, В.Ю. Баранов, Е.П. Велихов и др. // Поверхность. Физика, химия, механика. – 1982. – № 11. – С. 149–150.
  4. Laser and electron beam processing of amorphous surface alloys on conventional crystalline metals / K. Hashimoto, N. Kumagai, H. Yoshioka, K. Asami // Materials and Manufacturing Processes. – 1990. – Vol. 5, iss. 4. – P. 567–590. – doi: 10.1080/10426919008953278.
  5. Corrosion-resistant amorphous surface alloys / K. Hashimoto, N. Kumagai, H. Yoshioka, J.H. Kim, E. Akiyama, H. Habazaki, S. Mrowec, A. Kawashima, K. Asami // Corrosion Science. – 1993. – Vol. 35, iss. 1–4. – P. 363–370. – doi: 10.1016/0010-938X(93)90168-G.
  6. Laser surface coating of Fe-Cr-Mo-Y-B-C bulk metallic glass composition on AISI 4140 steel / A. Basu, A.N. Samant, S.P. Harimkar, J.D. Majumdar, I. Manna, N.B. Dahotre // Surface and Coatings Technology. – 2008. – Vol. 202. – P. 2623–2631. – doi: 10.1016/j.surfcoat.2007.09.028.
  7. Ductile FeNi-based bulk metallic glasses with high strength and excellent soft magnetic properties / J. Zhou, W. Yang, C. Yuan, B. Sun, B. Shen // Journal of Alloys and Compounds. – 2018. – Vol. 742. – P. 318–324. – doi: 10.1016/j.jallcom.2018.01.317.
  8. Судзуки К., Фудзимори Х., Хасимото К. Аморфные металлы: пер. с яп. / под ред. Ц. Масумото. – М.: Металлургия, 1987. – 328 с.
  9. Iron-based amorphous metals: high-performance corrosion-resistant material development / J. Farmer, J.-S. Choi, C. Saw, J. Haslam, D. Day, P. Hailey, T. Lian, R. Rebak, J. Perepezko, J. Payer, D. Branagan, B. Beardsley, A. D’;amato, L. Aprigliano // Metallurgical and Materials Transactions A. – 2009. – Vol. 40A. – P. 1289–1305. – doi: 10.1007/s11661-008-9779-8.
  10. Effect of Si addition on the electrochemical corrosion and passivation behavior of Fe-Cr-Mo-C-B-Ni-P metallic glasses / S. Zheng, J. Li, J. Zhang, K. Jiang, X. Liu, Ch. Chang, X. Wang // Journal of Non-Crystalline Solids. – 2018. – Vol. 493. – P. 33–40. – doi: 10.1016/j.jnoncrysol.2018.04.036.
  11. Microstructure and tribological behavior of spark plasma sintered iron-based amorphous coatings / A. Singh, S.R. Bakshi, A. Agarwal, S.P. Harimkar // Materials Science and Engineering A. – 2010. – Vol. 527. – P. 5000–5007. – doi: 10.1016/j.msea.2010.04.066.
  12. Structures and physical properties of two magnetic Fe-based metallic glasses / J. Zhang, G. Shan, J. Li, Y. Wang, C.H. Shek // Journal of Alloys and Compounds. – 2018. – Vol. 747. – P. 636–639. – doi: 10.1016/j.jallcom.2018.03.085.
  13. Structure and corrosion resistance properties of Ni-Fe-B-Si-Nb amorphous composite coatings fabricated by laser processing / R. Li, Z. Li, Y. Zhu, K. Qi // Journal of Alloys and Compounds. – 2013. – Vol. 580. – P. 327–331. – doi: 10.1016/j.jallcom.2013.06.111.
  14. High corrosion and wear resistance of Al-based amorphous metallic coating synthesized by HVAF spraying / M. Gao, W. Lu, B. Yang, S. Zhang, J. Wang // Journal of Alloys and Compounds. – 2018. – Vol. 735. – P. 1363–1373. – doi: 10.1016/j.jallcom.2017.11.274.
  15. Matthews D.T.A., Ocelik V., Hosson J.Th.M. de. Tribological and mechanical properties of high power laser surface-treated metallic glasses // Materials Science and Engineering A. – 2007. – Vol. 471. – P. 155–164. – doi: 10.1016/j.msea.2007.02.119.
  16. General structural and dynamic characteristics beneficial to glass-forming ability of Fe-based glass-forming liquids / N. Ren, B. Shang, P. Guan, L. Hu // Journal of Non-Crystalline Solids. – 2018. – Vol. 481. – P. 116–122. – doi: 10.1016/j.jnoncrysol.2017.10.029.
  17. D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting / D. Ouyang, N. Li, W. Xing, J. Zhang, L. Liu // Intermetallics. – 2017. – Vol. 90. – P. 128–134. – doi: 10.1016/j.intermet.2017.07.010.
  18. Microstructure and mechanical properties of Ni-Cr-Si-B-Fe composite coating fabricated through laser additive manufacturing / Z. Chang, W. Wang, Y. Ge, J. Zhou, Z. Cui // Journal of Alloys and Compounds. – 2018. – Vol. 747. – P. 401–407. – doi: 10.1016/j.jallcom.2018.02.296.
  19. Additive manufacturing of iron-based bulk metallic glass larger than the critical casting thickness / Z. Mahbooba, L. Thorsson, M. Unosson, P. Skoglund, H. West, T. Horn, Ch. Rock, E. Vogli, O. Harrysson // Applied Materials Today. – 2018. – Vol. 11. – P. 264–269. – doi: 10.1016/j.apmt.2018.02.011.
  20. Effect of the remelting scanning speed on the amorphous forming ability of Ni-based alloy using laser cladding plus a laser remelting process / R. Li, Y. Jin, Z. Li, Y. Zhu, M. Wu // Surface and Coatings Technology. – 2014. – Vol. 259. – P. 725–731. – doi: 10.1016/j.surfcoat.2014.09.067.
  21. Патент 2425907 Российская Федерация. Способ модификации металлических поверхностей и устройство / С.Н. Багаев, Г.Н. Грачев, А.Л. Смирнов, П.Ю. Смирнов. – № 2009115826/02; опубл. 10.08.2011, Бюл. № 22.
  22. Применение метода лазерно-плазменной модификации поверхности металлов для улучшения триботехнических характеристик цилиндров двигателей внутреннего сгорания / С.Н. Багаев, Г.Н. Грачев, А.Л. Смирнов, М.Н. Хомяков, А.О. Токарев, П.Ю. Смирнов // Обработка металлов (технология, оборудование, инструменты). – 2014. – № 1 (62). – С. 14–23.
  23. Laser-plasma treatment of structural steel / A. Tokarev, Z. Bataeva, G. Grachev, A. Smirnov, M. Khomyakov, A. Gerber // Applied Mechanics and Materials. – 2015. – Vol. 788. – P. 58–62. – doi: 10.4028/ href='www.scientific.net/AMM.788.58' target='_blank'>www.scientific.net/AMM.788.58.
  24. Самарский А.А., Вабищевич П.Н. Вычислительная теплопередача. – М.: Едиториал УРСС, 2003. – 784 с. – ISBN 978-5-397-04510-0.
  25. Самарский А.А., Гулин А.В. Численные методы. – М.: Наука, 1989. – 432 с. – ISBN 5-02-013996-3.
  26. Никелевые и железные самофлюсующиеся сплавы для покрытий [Электронный ресурс] // АО «Полема»: web-сайт. – URL: http://www.polema.net/nikelevye-samofljusujushhiesja-splavy-dlja-pokrytij.html (дата обращения: 13.11.2018).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).