Equilibrium Phase Diagram of the Zn–Ag Alloy

Cover Page

Cite item

Full Text

Abstract

Object of research: when refining rough lead from metallic zinc impurities, a silver foam (SF) containing lead, zinc and silver is formed on the surface of the liquid melt. To separate the components of the silver foam it is possible to apply vacuum distillation – environmentally friendly and high-performance technologies in pyrometallurgy. A preliminary analysis of the behavior of the polymetallic alloy in the process of distillation, in particular, the composition of the products of sublimation and the degree of separation of the alloy components at specified temperature and pressure is carried out using calculated equilibrium phase diagrams VLE (vapor liquid equilibrium), for example, the temperature–composition “T– x”, pressure–composition “P–x”. Objective: the calculation of the equilibrium “gas–liquid” for binary Zn-Ag alloy. Methods and approaches: when constructing the VLE, the activity coefficients of the Zn-Ag alloy components are calculated according to the volumetric model of molecular interaction molecular interaction volume model (MIVM). Novelty: the original information about the influence of temperature and residual pressure in the system on the degree of distillation and separation of metals from Zn-Ag alloys of variable composition is obtained. Main results: saturated steam pressures for Zn (5.79.102–3.104.104) and Ag (5.30.10–9…5.05 × 10–5) were calculated in the temperature range 823…1073 K. High values of  = 1.09.1011–6.14 × 108 ratio and separation coefficient logßZn = 8.318…12.180 create theoretical prerequisites for separation, when zinc suggest the possibility of separate extraction by sublimation of the zinc in gas phase (βZn> 1) and the concentration of silver in the liquid phase. The increase in the content of molar fractions of silver in the alloy from 0.1 to 0.9 and the system temperature from 823 to 1073 K leads to an increase in the molar fraction of silver in the gas phase from 1.10–15 to 8.5 × 10–7. The values of thermodynamic functions are calculated for the equilibrium state of the liquid and gas phases of the Zn-Ag system:  = 0.08…1.36 kJ/mol;  = 1.52…5.73 kJ/mol;  = 1.57…5.38 J/mol.К are determined for the interface of liquid–gas Zn–Ag alloy. Practical relevance: equilibrium phase diagrams VLE Zn-Ag alloy is used in the preliminary stages of designing of experimental-industrial equipment for vacuum distillation technology, and to select ranges of temperature and pressure in the system with the purpose of obtaining a Zn- and Ag-containing products of a given composition.

About the authors

A. A. Korolev

Email: gennadymaltsev@mail.ru
JSC "Uralelektromed", 1 Prospect Uspensky, Verkhnyaya Pyshma, 624091, Russian Federation; gennadymaltsev@mail.ru

G. I. Maltsev

Email: mgi@elem.ru
D.Sc. (Engineering), Associate Professor; JSC "Uralelektromed", 1 Prospect Uspensky, Verkhnyaya Pyshma, 624091, Russian Federation; mgi@elem.ru

K. L. Timofeev

Email: K.Timofeev@elem.ru
Ph.D. (Engineering); Technical University UMMC", 3 Prospekt Uspensky, Verkhnyaya Pyshma, 624091, Russian Federation; K.Timofeev@elem.ru

V. G. Lobanov

Email: lobanov-vl@yandex.ru
Ph.D. (Engineering), Associate Professor; Ural Federal University, 19 Mira st., Ekaterinburg, 620002, Russian Federation; lobanov-vl@yandex.ru

References

  1. Vacuum distillation refining of crude lithium (I) / W.M. Chen, B. Yang, L. Chai, X. Min, Y. Dai, C. Zhang // Transactions of Nonferrous Metals Society of China. – 2001. – Vol. 11, N 6. – P. 937–941.
  2. Thermodynamics of removing impurities from crude lead by vacuum distillation refining / X.-f. Kong, B. Yang, H. Xiong, L.-x. Kong // Transactions of Nonferrous Metals Society of China. – 2014. –Vol. 24, iss. 6. – P. 1946–1950. – doi: 10.1016/S1003-6326(14)63275-1.
  3. Thermodynamic modeling of the Pb + Bi melt evaporation under various pressures and temperatures / N. Barbin, D. Terentiev, S. Alexeev, T. Barbina // Computational Materials Science. – 2013. – Vol. 66. – P. 28–33. – doi: 10.1016/j.commatsci.2012.06.013.
  4. Dai Y.N. Vacuum distillation and separation of Pb-Sn alloy // Nonferrous Metal. – 1977. – Vol. 9. – P. 24–30.
  5. Dai Y.N. Vacuum distillation of Pb-Sn alloy // Nonferrous Metal. – 1980. – Vol. 32. – P. 73–79.
  6. Dai Y.N., He A.P. Vacuum distillation of lead-tin alloy // Journal of Kunming Institute of Technology. – 1989. – Iss. 3. – P. 16–27.
  7. Volodin V.N., Isakova R.A., Khrapunov V.E. Liquid-vapour phase equilibrium in metal systems and parameters of vacuum distillation processes forecasting // Non-ferrous Metals. – 2011. – N 1. – P. 38–42.
  8. Термодинамика равновесия жидкость ? пар / А.Г. Морачевский, Н.А. Смирнова, Е.М. Пиотровская и др.; под ред. А.Г. Морачевского. – Ленинград: Химия, 1989. – 344 с.
  9. Liquid-vapor phase equilibrium in the stratifying thallium-zinc system / V.N. Volodin, V.E. Khrapunov, N.M. Burabaeva, I.A. Marki // Russian Journal of Non-Ferrous Metals. ? 2010. ? Vol. 51, iss. 3. ? Р. 205–211. ? doi: 10.3103/S1067821210030028.
  10. Application of vacuum distillation in refining crude lead / Y. Zhang, J. Deng, W. Jiang, Q. Mei, D. Liu // Vacuum. ? 2018. ? Vol. 148. ? Р. 140–148. ? doi: org/10.1016/j.vacuum.2017.11.004.
  11. Harmless, industrial vacuum-distillation treatment of noble lead / J. Deng, Y. Zhang, W. Jiang, Q. Mei, D. Liu // Vacuum. ? 2018. ? Vol. 149. ? Р. 306–312. ? doi: 10.1016/j.vacuum.2018.01.017.
  12. Low-temperature deposition of nanocrystalline Al2O3 films by ion source-assisted magnetron sputtering / J.C. Ding, T.F. Zhang, R.S. Mane, K.-H. Kim, M.C. Kang, C.W. Zou, Q.M. Wang // Vacuum. – 2018. – Vol. 149. – P. 284–290. – doi: 10.1016/j.vacuum.2018.01.009.
  13. Hot workability of PM 8009Al/Al2O3 particle-reinforced composite characterized using processing maps / S. Chen, D. Fu, H. Luo, Y. Wang, J. Teng, H. Zhang // Vacuum. – 2018. – Vol. 149. – P. 297–305. – doi: 10.1016/j.vacuum.2018.01.001.
  14. Materials science and technology: a comprehensive treatment. Vol. 1. Structure of solids / ed. by V. Gerold. – Weinheim: VCH, 1993. – 621 p.
  15. On excited particle formation in crossed Е×Н fields / I.A. Afanasіeva, V.V. Bobkov, V.V. Gritsyna, Yu.E. Logachev, I.I. Okseniuk, A.A. Skrypnyk, D.I. Shevchenko // Vacuum. – 2018. – Vol. 149. – P. 124–128. – doi: 10.1016/j.vacuum.2017.12.027.
  16. Dy3+-, Tb3+-, and Eu3+-activated NaCa4(BO3)3 phosphors for lighting based on near ultraviolet light emitting diodes / M. Shi, C. Zhu, M. Wei, Z. He, M. Lu // Vacuum. – 2018. – Vol. 149. – P. 343–349. – doi: 10.1016/j.vacuum.2018.01.014.
  17. Королев А.А., Краюхин С.А., Мальцев Г.И. Равновесные системы «газ–жидкость» для сплава Sb–Ag при вакуумной дистилляции // Обработка металлов (технология, оборудование, инструменты). – 2017. – № 4 (77). – С. 68–83. – doi: 10.17212/1994-6309-2017-4-68-83.
  18. Переработка сурьмянисто-оловянных концентратов вакуумной дистилляцией / А.А. Королев, Г.И. Мальцев, К.Л. Тимофеев, В.Г. Лобанов // Обработка металлов (технология, оборудование, инструменты). – 2018. – Т. 20, № 1. – С. 6–21. – doi: 10.17212/1994-6309-2018-20.1-6-21.
  19. Chakraborty M., Bhattacharyya S. Air-annealed growth and characterization of Cd1-xZnxTe thin films grown from CdTe/ZnTe/CdTe multi-stacks // Vacuum. – 2018. – Vol. 149. – P. 156–167. – doi: 10.1016/j.vacuum.2017.12.029.
  20. Removal of chloride impurities from titanium sponge by vacuum distillation / L. Liang, L. Dachun, W. Heli, L. Kaihua, D. Juhai, J. Wenlong // Vacuum. – 2018. – Vol. 152. – P. 166–172. – doi: 10.1016/j.vacuum.2018.02.030.
  21. Trigueiro J., Bundaleski N., Teodoro O.M.N.D. Monitoring dynamics of different processes on rutile TiO2(110) surface by following work function change // Vacuum. – 2018. – Vol. 152. – P. 327–329. – doi: 10.1016/j.vacuum.2018.03.049.
  22. Effect of Si on thermal stability of Nb-22.5Cr alloy / L. Deng, S. Lu, B. Tang, Y. Lin // Vacuum. – 2018. – Vol. 152. – P. 312–318. – doi: 10.1016/j.vacuum.2018.03.046.
  23. Thermodynamic and experimental study of C-S system and C-S-Mo system / L. Wang, P. Guo, P. Zhao, L. Kong, Z. Tian // Vacuum. – 2018. – Vol. 152. – P. 330–336. – doi: 10.1016/j.vacuum.2018.03.053.
  24. Reactive deposition of TiN films by magnetron with magnetized hollow cathode enhanced target / H. Baránková, L. Bardos, K. Silins, A. Bardos // Vacuum. – 2018. – Vol. 152. – P. 123–127. – doi: 10.1016/j.vacuum.2018.03.010.
  25. Effect of annealing in oxidizing atmosphere on optical and structural properties of silicon suboxide thin films obtained by gas-jet electron beam plasma chemical vapor deposition method / A.O. Zamchiy, E.A. Baranov, I.E. Merkulova, V.A. Volodin, M.R. Sharafutdinov, S.Ya. Khmel // Vacuum. – 2018. – Vol. 152. – P. 319–326. – doi: 10.1016/j.vacuum.2018.03.055.
  26. Microstructural evolution and mechanical properties of vacuum brazed Ti2AlNb alloy and Ti60 alloy with Cu75?P?t filler metal / S.P. Hu, T.Y. Hu, Y.Z. Lei, X.G. Song, D. Liu, J. Cao, D.Y. Tang // Vacuum. – 2018. – Vol. 152. – P. 340–346. – doi: 10.1016/j.vacuum.2018.03.054.
  27. Королев А.А., Краюхин С.А., Мальцев Г.И. Фазовые равновесия в системе Pb–Ag при пирометаллургической возгонке // Вестник ЮУрГУ. Серия: Металлургия. – 2017. – Т. 17, № 2. – С. 22–33. – doi: 10.14529/met170203.
  28. Королев А.А., Краюхин С.А., Мальцев Г.И. Равновесные системы газ – жидкость для сплава Pb–Sb при вакуумной дистилляции // Вестник ПНИПУ. Машиностроение, материаловедение. – 2017. – Т. 19, № 3. – С. 75–99. – doi: 15593/2224-9877/2017.3.05.
  29. Королев А.А., Краюхин С.А., Мальцев Г.И. Фазовые равновесия для Pb–Zn–Аg сплава при вакуумной дистилляции // Расплавы. – 2017. – № 5. – C. 435–450.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).