Regularities of Composite Materials Formation using Additive Electron-Beam Technology, Friction Stir Welding and Friction Stir Processing

Cover Page

Cite item

Full Text

Abstract

Introduction. At the present time, among the methods of obtaining polymetallic structures of great importance are the technologies of solid-phase and liquid-phase materials production, as well as the ways of combining different methods and using hybrid technologies. In this connection, it is necessary to carry out complex comparative research tests of structural-phase changes in the materials obtained by different methods from dissimilar metals and alloys. The purpose of this work is to obtain polymetallic structures of "copper-aluminum" system by different methods and to study the structural-phase state of the materials. The structure of copper-aluminum polymetallic samples formed by friction stir welding, friction stir processing and additive electron-beam wire-feed technology has been studied. The methods as optical microscopy, scanning electron microscopy and microhardness measurement were used in the study. Results and discussions. Different features of solid solutions and intermetallic phases formation in materials at various technological processes are revealed, and peculiarities of defects formation depending on technological methods of samples formation are determined. Possibilities of obtaining samples with a composite structure including hardening intermetallic particles in the metal matrix by different manufacturing and processing methods are determined. The received data testify to the formation of intermetallic phases of higher hardness in the boundary layer area during the mixing of the system components in the liquid state under the additive electron-beam technology conditions. Distribution of intermetallic components is more uniform at friction stir processing of copper and aluminum sheet metal package with an arrangement of aluminum alloy sheet in the upper part. The least hard intermetallic phases are formed during friction stir welding. Overheating of the system and sample destruction is possible with different positions of copper and aluminum alloy sheets during friction stir welding and processing. The heterogeneous structure of the stir zone of the system components during friction stir welding is determined by different conditions on the advancing and retreating sides of the sample. The structure of the stir zone of the heterogeneous materials sample is similar to that formed during friction stir welding of homogeneous materials and is represented by a vortex structure with alternation of different system components layers. Intensive diffusion interaction of aluminum alloy and copper during friction stir processing leads to the introduction of solid solutions and intermetallic phases to a significant depth in the heat-affected zone of copper sheet. Sample destruction due to the defect formation in the form of different scale level cracks at additive electron-beam technology occurs mainly in the zone of the hardest intermetallic phase formation along the boundaries of various structural components.

About the authors

K. A. Tatiana

Email: gelombang@ispms.tsc.ru
Institute of Strength Physics and Materials Science Siberian Branch of Russian Academy of Science, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, gelombang@ispms.tsc.ru

G. V. Anastasia

Email: gusarova@ispms.ru
Institute of Strength Physics and Materials Science Siberian Branch of Russian Academy of Science, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, gusarova@ispms.ru

C. V. Andrey

Email: tch7av@gmail.com
Ph.D. (Engineering), Institute of Strength Physics and Materials Science Siberian Branch of Russian Academy of Science, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, tch7av@gmail.com

K. O. Evgeny

Email: zhenya4825@gmail.com
National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russian Federation, zhenya4825@gmail.com

S. A. Mikhail

Email: shved1951@rambler.ru
Ph.D. (Engineering), I. N. Ulianov Chuvash State University, 15 Moskovsky Prospekt, Cheboksary, 428015, Russian Federation, shved1951@rambler.ru

V. A. Petr

Email: svarkacheb@yandex.ru
I. N. Ulianov Chuvash State University, 15 Moskovsky Prospekt, Cheboksary, 428015, Russian Federation, svarkacheb@yandex.ru

References

  1. Adhesion transfer in sliding a steel ball against an aluminum alloy / S.Yu. Tarasov, A.V. Filippov, E.A. Kolubaev, T.A. Kalashnikova // Tribology International. – 2017. – Vol. 115. – P. 191–198.
  2. Towards aging in a multipass friction stir–processed АА2024 / K.N. Kalashnikov, S.Yu. Tarasov, A.V. Chumaevskii, S.V. Fortuna, A.A. Eliseev, A.N. Ivanov // International Journal of Advanced Manufacturing Technology. – 2019. – Vol. 103 (5–8). – P. 2121–2132. – doi: 10.1007/s00170-019-03631-3.
  3. Abbasi M., Givi M., Bagheri B. Application of vibration to enhance efficiency of friction stir processing // Transactions of Nonferrous Metals Society of China. – 2019. – Vol. 29 (7). – P. 1393–1400. – doi: 10.1016/S1003-6326(19)65046-6.
  4. Review of friction stir processing of magnesium alloys / R.A. Kumar, S. Ramesh, E.S. Kedarvignesh, M.S.A. Arulchelvam, S. Anjunath // Materials Today: Proceedings. – 2019. – Vol. 16 (2). – P. 1320–1324. – doi: 10.1016/j.matpr.2019.05.230.
  5. Ma Z.Y. Friction stir processing technology: a review // Metallurgical and Materials Transactions A. – 2008. – Vol. 39 (3). – P. 642–658. – doi: 10.1007/s11661-007-9459-0.
  6. Reactive mechanism and mechanical properties of in-situ hybrid nano-composites fabricated from an Al–Fe2O3 system by friction stir processing / G. Azimi-Roeen, S.F. Kashani-Bozorg, M. Nosko, P. Švec // Materials Characterization. – 2017. – Vol. 127. – P. 279–287.
  7. Influence of multi-pass friction stir processing on wear behaviour and machinability of an Al-Si hypoeutectic A356 alloy / S.K. Singh, R.J. Immanuel, S. Babu, S.K. Panigrahi, G.D. Janaki Ram // Journal of Materials Processing Technology. – 2016. – Vol. 236. – P. 252–262. – doi: 10.1016/j.jmatprotec.2016.05.019.
  8. Cast aluminium matrix composites modified with using FSP process – changing of the structure and mechanical properties / P. Kurtyka, N. Rylko, T. Tokarski, A. Wójcicka, A. Pietras // Composite Structures. – 2015. – Vol. 133. – P. 959–967.
  9. Tarasov S.Yu., Rubtsov V.E., Kolubaev E.A. A proposed diffusion-controlled wear mechanism of alloy steel friction stir welding (FSW) tools used on an aluminum alloy // Wear. – 2014. – Vol. 318 (1–2). – P. 130–134.
  10. Ultrasonic-assisted aging in friction stir welding on Al-Cu-Li-Mg aluminum alloy / S.Yu. Tarasov, V.E. Rubtsov, S.V. Fortuna, A.A. Eliseev, A.V. Chumaevsky, T.A. Kalashnikova, E.A. Kolubaev // Welding in the World. – 2017. – Vol. 61 (4). – P. 679–690.
  11. Tarasov S.Yu., Rubtsov V.E., Kolubaev E.A., Gnyusov S.F., Kudinov Yu.A. Radioscopy of remnant joint line in a friction stir welded seam // Russian Journal of Nondestructive Testing. – 2015. – Vol. 51 (9). – P. 573–579.
  12. Friction-stir welding of ultra-fine grained sheets of Al-Mg-Sc-Zr alloy / S. Malopheyev, S. Mironov, V. Kulitskiy, R. Kaibyshev // Materials Science and Engineering: A. – 2015. – Vol. 624. – P. 132–139.
  13. Superplasticity of friction-stir welded Al-Mg-Sc sheets with ultrafine-grained microstructure / S. Malopheyev, S. Mironov, I. Vysotskiy, R. Kaibyshev // Materials Science and Engineering: A. – 2016. – Vol. 649. – P. 85–92.
  14. Friction-stir welding of an Al-Mg-Sc-Zr alloy in as-fabricated and work-hardened conditions / S. Malopheyev, V. Kulitskiy, S. Mironov, D. Zhemchuzhnikova, R. Kaibyshev // Materials Science and Engineering: A. – 2014. – Vol. 600. – P. 159–170.
  15. Fullerene/A5083 composites fabricated by material flow during friction stir processing / Y. Morisada, H. Fujii, T. Nagaoka, K. Nogi, M. Fukusumi // Composites Part A: Applied Science and Manufacturing. – 2007. – Vol. 38. – P. 2097–2101. – doi: 10.1016/j.compositesa.2007.07.004.
  16. Lee C.J., Huang J.C. High strain rate superplasticity of Mg based composites fabricated by friction stir processing // Materials Transactions. – 2006. – Vol. 47. – P. 2773–2778.
  17. Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing / K. Sun, Q.Y. Shi, Y.J. Sun, G.Q. Chen // Materials Science and Engineering: A. – 2012. – Vol. 547. – P. 32–37.
  18. Dixit M., Newkirk J.W., Mishra R.S. Properties of friction stir-processed Al 1100-NiTi composite // Scripta Materialia. – 2007. – Vol. 56. – P. 541–544.
  19. Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing / D.R. Ni, J.J. Wang, Z.N. Zhou, Z.Y. Ma // Journal of Alloys and Compounds. – 2014. – Vol. 586. – P. 368–374.
  20. Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing / Q. Liu, L. Ke, F. Liu, C. Huang, L. Xing // Materials and Design. – 2013. – Vol. 45. – P. 343–348.
  21. A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing / W. Wang, Q.-Y. Shi, P. Liu, H.-K. Li, T. Li // Journal of Materials Processing Technology. – 2009. – Vol. 209. – P. 2099–2103.
  22. Fabrication of a new Al-Al2O3-CNTs composite using friction stir processing (FSP) / Z. Du, M.J. Tan, J.F. Guo, G. Bi, J. Wei // Materials Science and Engineering: A. – 2016. – Vol. 667. – P. 125–131.
  23. Additive manufacturing of metallic components – process, structure and properties / T. Debroy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang // Progress in Materials Science. – 2018. – Vol. 92. – P. 112–224. – doi: 10.1016/j.pmatsci.2017.10.001.
  24. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys / S. Gorsse, C. Hutchinson, M. Gouné, R. Banerjee // Science and Technology of Advanced Materials. – 2017. – Vol. 18 (1). – P. 1–27.
  25. Progress in additive manufacturing on new materials: a review / N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, J. Blackburn // Journal of Materials Science and Technology. – 2019. – Vol. 35 (2). – P. 242–269.
  26. Basak A., Das S. Epitaxy and microstructure evolution in metal additive manufacturing // Annual Review of Materials Research. – 2016. – Vol. 46. – P. 125–149.
  27. Design of novel materials for additive manufacturing – isotropic microstructure and high defect tolerance / J. Günther, F. Brenne, M. Droste, M. Wendler, O. Volkova, H. Biermann, T. Niendorf // Scientific Reports. – 2018. – Vol. 8. – P. 1–14.
  28. Wang Z., Palmer T.A., Beese A.M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing // Acta Materialia. – 2016. – Vol. 110. – P. 226–235.
  29. Characterization of wire arc additively manufactured titanium aluminide functionally graded material: microstructure, mechanical properties and oxidation behavior / J. Wang, Z. Pan, Y. Ma, Y. Lu, C. Shen, D. Cuiuri, H. Li // Materials Science and Engineering: A. – 2018. – Vol. 734. – P. 110–119.
  30. Liu W.P., DuPont J.N. Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping // Scripta Materialia. – 2003. – Vol. 48 (9). – P. 1337–1342.
  31. Effect of heat input on phase content, crystalline lattice parameter, and residual strain in wire-feed electron beam additive manufactured 304 stainless steel / S.Yu. Tarasov, A.V. Filippov, N.L. Savchenko, S.V. Fortuna, V.E. Rubtsov, E.A. Kolubaev, S.G. Psakhie // International Journal of Advanced Manufacturing Technology. – 2018. – Vol. 99 (9–12). – P. 2353–2363.
  32. The Features of structure formation in chromium-nickel steel manufactured by a wire-feed electron beam additive process / A.V. Kolubaev, S.Yu. Tarasov, A.V. Filippov, Yu.A. Denisova, E.A. Kolubaev, A.I. Potekaev // Russian Physics Journal. – 2018. – Vol. 61 (8). – P. 1491–1498.
  33. Microstructural evolution and chemical corrosion of electron beam wire-feed additively manufactured AISI 304 stainless steel / S.Yu. Tarasov, A.V. Filippov, N.N. Shamarin, S.V. Fortuna, G.G. Maier, E.A. Kolubaev // Journal of Alloys and Compounds. – 2019. – Vol. 803. – P. 364–370.
  34. Fabrication of large Ti-6Al-4V structures by direct laser deposition / C.L. Qiu, G.A. Ravi, C. Dance, A. Ranson, S. Dilworth, M.M. Attallah // Journal of Alloys and Compounds. – 2015. – Vol. 629. – P. 351–361.
  35. Heat-treated microstructure and mechanical properties of laser solid forming Ti-6Al-4V alloy / S.Y. Zhang, X. Lin, J. Chen, W.D. Huang // Rare Metals. – 2009. – Vol. 28 (6). – P. 537–544.
  36. Dinda G.P., Song L., Mazumder J. Fabrication of Ti-6Al-4V scaffolds by direct metal deposition // Metallurgical and Materials Transactions A. – 2008. – Vol. 39 (12). – P. 2914–2922.
  37. Edwards P., O’;Conner A., Ramulu M. Electron beam additive manufacturing of titanium components: properties and performance // Journal of Manufacturing Science and Engineering. – 2013. – Vol. 135 (6). – P. 061016.
  38. Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting / X. Zhao, S. Li, M. Zhang, Y. Liu, T.B. Sercombe, S. Wang, Y. Hao, R. Yang, L.E. Murr // Materials and Design. – 2016. – Vol. 95. – P. 21–31.
  39. Phase constituent control and correlated properties of titanium aluminide intermetallic alloys through dual-wire arc additive manufacturing / J. Wang, Z. Pan, D. Cuiuri, H. Li // Materials Letters. – 2019. – Vol. 242. – P. 111–114.
  40. Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: characterization and thermodynamic modeling / B.E. Carroll, R.A. Otis, J.P. Borgonia, J.O. Suh, R.P. Dillon, A.A. Shapiro, D.C. Hofmann, Z. Liu, A.M. Beese // Acta Materialia. – 2016. – Vol. 108. – P. 46–54.
  41. Articek U., Milfelner M., Anzel I. Synthesis of functionally graded material H13/Cu by LENS technology // Advances in Production Engineering and Management. – 2013. – Vol. 8 (3). – P. 169–176. – doi: 10.14743/apem2013.3.164.
  42. Kahlen F.J., Klitzing A. von, Kar A. Hardness, chemical, and microstructural studies for laser-fabricated metal parts of graded materials // Journal of Laser Applications. – 2000. – Vol. 12 (5). – P. 205–209.
  43. Kayg?s?z Y. Microstructure characterization and hardness of Al-Cu-Mn eutectic alloy // China Foundry. – 2018. – Vol. 15 (5). – P. 390–396. – doi: 10.1007/s41230-018-7225-0.
  44. Formation of Al2Cu and AlCu intermetallics in Al(Cu) alloy matrix composites by reaction sintering / M. Aravind, P. Yu, M.Y. Yau, D.H.L. Ng // Materials Science and Engineering: A. – 2004. – Vol. 380 (1–2). – P. 384–393. – doi: 10.1016/j.msea.2004.04.013.
  45. Mixed mode I / II crack growth investigation for bi-metal FSW aluminum alloy AA7075-T6 / pure copper joints / M.R.M. Aliha, M.H. Kalantari, S.M.N. Ghoreishi, A.R. Torabi, S. Etesam // Theoretical and Applied Fracture Mechanics. – 2019. – Vol. 103. – P. 102243. – doi: 10.1016/j.tafmec.2019.102243.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».