Исследование технологии микродозированной подачи смазочных композиций с наночастицами при шлифовании жаропрочного никелевого сплава с дополнительным воздушным охлаждением
- Авторы: Митрофанов А.П.1, Носенко В.А.1
-
Учреждения:
- Выпуск: Том 21, № 4 (2019)
- Страницы: 6-18
- Раздел: ТЕХНОЛОГИЯ
- URL: https://ogarev-online.ru/1994-6309/article/view/302047
- DOI: https://doi.org/10.17212/1994-6309-2019-21.4-6-18
- ID: 302047
Цитировать
Полный текст
Аннотация
Об авторах
А. П. Митрофанов
Email: greenmap@yandex.ru
канд. техн. наук, Доцент, Волжский политехнический институт (филиал) Волгоградского государственного технического университета, ул. Энгельса, 42а, г.Волжский, 404121, Россия, greenmap@yandex.ru
В. А. Носенко
Email: vladim.nosenko2014@yandex.ru
доктор техн. наук, Профессор, Волжский политехнический институт (филиал) Волгоградского государственного технического университета, ул. Энгельса, 42а, г.Волжский, 404121, Россия, vladim.nosenko2014@yandex.ru
Список литературы
- Role of frozen lubricant film on tribological behaviour and wear mechanisms in grinding / E. García, D. Méresse, I. Pombo, M. Dubar, J. Sánchez // The International Journal of Advanced Manufacturing Technology. – 2016. – Vol. 82. – P. 1017–1027. – doi: 10.1007/s00170-015-7397-3.
- Reddy P.P., Ghosh A. Some critical issues in cryo-grinding by a vitrified bonded alumina wheel using liquid nitrogen jet // Journal of Materials Processing Technology. – 2016. – Vol. 229. – P. 329–337. – doi: 10.1016/j.jmatprotec.2015.09.040.
- Nguyen T. An assessment of the applicability of cold air and oil mist in surface grinding // Journal of Materials Processing Technology. – 2003. – Vol. 140. – P. 224–230. – doi: 10.1016/S0924-0136(03)00714-3.
- Choi H.Z., Lee S.W., Jeong H.D. The cooling effects of compressed cold air in cylindrical grinding with alumina and CBN wheels // Journal of Materials Processing Technology. – 2002. – Vol. 127. – P. 155–158. – doi: 10.1016/S0924-0136(02)00117-6.
- Improvement of surface grinding process performance of CK45 soft steel by minimum quantity lubrication (MQL) technique using compressed cold air jet from vortex tube / A. Saberi, A.R. Rahimi, H. Parsa, M. Ashrafijou, F. Rabiei // Journal of Cleaner Production. – 2016. – Vol. 131. – P. 728–738. – doi: 10.1016/j.jclepro.2016.04.104.
- Lee P.A. Study on thermal characteristics of micro-scale grinding process using nanofluid minimum quantity lubrication (MQL) // International Journal of Precision Engineering and Manufacturing. – 2015. – Vol. 16, N 9. – P. 1899–1909. – doi: 10.1007/s12541-015-0247-2.
- Shen B. Application of nanofluids in minimum quantity lubrication grinding // Tribology Transactions. – 2008. – Vol. 51. – P. 730–737. – doi: 10.1080/10402000802071277.
- Sharma A.K., Tiwari A.K., Dixit A.R. Mechanism of nanoparticles functioning and effects in machining processes: a review // Materials Today: Proceedings. – 2015. – Vol. 2, iss. 4–5. – P. 3539–3544. – doi: 10.1016/j.matpr.2015.07.331.
- Nanofluids as potential solution for minimum quantity lubrication: a review / R.R. Srikant, M.M.S. Prasad, M. Amrita, A.V. Sitaramaraju, P.V. Krishna // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. – 2014. – Vol. 228, iss. 1. – P. 3–20. – doi: 10.1177/0954405413497939.
- Vasu V., Pradeep Kumar Reddy G. Effect of minimum quantity lubrication with Al2O3 nanoparticles on surface roughness, tool wear and temperature dissipation in machining Inconel 600 alloy // Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems. – 2011. – Vol. 225, iss. 1. – P. 3–16. – doi: 10.1177/1740349911427520.
- Крутикова А.А., Митрофанов А.П., Паршева К.А. Применение технологии подачи минимального количества смазки в охлажденном воздушном потоке при шлифовании жаропрочного сплава // Технология металлов. – 2019. – № 8. – С. 9–15. – doi: 10.31044/1684-2499-2019-8-0-9-15.
- Temperature field model and experimental verification on cryogenic air nanofluid minimum quantity lubrication grinding / J. Zhang, C. Li, Y. Zhang, M. Yang, D. Jia, Y. Hou, R. Li // The International Journal of Advanced Manufacturing Technology. – 2018. – Vol. 97. – P. 209–228. – doi: 10.1007/s00170-018-1936-7.
- Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil / Y. Zhang, C. Li, D. Jia, D. Zhang, X. Zhang // Journal of Cleaner Production. – 2015. – Vol. 87. – P. 930–940. – doi: 10.1016/j.jclepro.2014.10.027.
- An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL) / P.H. Lee, J.S. Nam, C. Li, S.W. Lee // International Journal of Precision Engineering and Manufacturing. – 2012. – Vol. 13, iss. 3. – P. 331–338. – doi: 10.1007/s12541-012-0042-2.
- Environment-friendly technological advancements to enhance the sustainability in surface grinding – a review / D. Manu, S.S. Vishal, S.D. Jasminder, S.G. Simranpreet // Journal of Cleaner Production. – 2018. – Vol. 197. – P. 218–231. – doi: 10.1016/j.jclepro.2018.05.280.
- Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding / D. Zhang, C. Li, D. Jia, Y. Zhang, X. Zhang // Chinese Journal of Aeronautics. – 2015. – Vol. 28, iss. 2. – P. 570–581. – doi: 10.1016/j.cja.2014.12.035.
- Cyclic oxidation behavior of IN 718 superalloy in air at high temperatures / K.A. Al-hatab, M.A. Al-bukhaiti, U. Krupp, M. Kantehm // Oxidation of Metals. – 2011. – Vol. 75, iss. 3–4. – P. 209–228. – doi: 10.1007/s11085-010-9230-6.
- SEM-EDS and XPS studies of the high temperature oxidation behaviour of Inconel 718 / F. Delaunay, C. Berthier, M. Lenglet, J.M. Lameille // Mikrochimica Acta. – 2000. – Vol. 132, iss. 2–4. – P. 337–343. – doi: 10.1007/s006040050027.
- Li W. Influences of tensile strain and strain rate on the electron work function of metals and alloys // Scripta Materialia. – 2006. – Vol. 54, iss. 5. – P. 921–924. – doi: 10.1016/j.scriptamat.2005.10.064.
- Hua G., Li D. Generic relation between the electron work function and Young’;s modulus of metals // Applied Physics Letters. – 2011. – Vol. 99, iss. 4. – P. 041907. – doi: 10.1063/1.3614475.
- Lu H. Electron work function – a promising guiding parameter for material design / H. Lu, Z. Liu, X. Yan, D. Li, L. Parent, H. Tian // Scientific Reports. – 2016. – Vol. 6. – P. 1–11. – doi: 10.1038/srep24366.
- Zhou Y., Lu J.Q., Qin W.G. Change in the electronic work function under different loading conditions // Materials Chemistry and Physics. – 2009. – Vol. 118. – P. 12–14. – doi: 10.1016/j.matchemphys.2009.07.062.
- Shiyi L., Hao L., Li D.Y. The relationship between the electron work function and friction behavior of passive alloys under different conditions // Applied Surface Science. – 2015. – Vol. 351. – P. 316–319. – doi: 10.1016/j.apsusc.2015.05.125.
- Wang J., Wang S.Q. Surface energy and work function of fcc and bcc crystals: density functional study // Surface Science. – 2014. – Vol. 630. – P. 216–224. – doi: 10.1016/j.susc.2014.08.017.
Дополнительные файлы
