Влияние режима сварки трением с перемешиванием и ее направления относительно направления прокатки сплава Д16 на структуру и свойства его сварных соединений

Обложка

Цитировать

Полный текст

Аннотация

Введение. Режим сварки трением с перемешиванием определяет характер термомеханического воздействия на свариваемый материал, поэтому критическое изменение даже одного из параметров режима может привести к формированию дефектов и снижению прочности сварного соединения. Немаловажным фактором также является ориентация свариваемого материала относительно направления сварки, поскольку она определяет кинетику деформирования материала и, как следствие, результирующую структуру и свойства. Исследования процессов сварки трением с перемешиванием в основном заключаются в анализе конечных свойств получаемых сварных соединений и их сопоставлении с параметрами режима сварки. Но для решения задачи получения прочных и качественных сварных соединений немаловажной также является оценка сопротивления материала деформированию от воздействия сварочного инструмента, что достигается мониторингом ряда параметров непосредственно в процессе сварки. Целью работы является исследование влияния параметров режима сварки и ориентации структуры свариваемого материала на протекание процесса сварки трением с перемешиванием, а также на структуру и прочность получаемых сварных соединений алюминиевого сплава Д16. Результаты и обсуждение. Посредством мониторинга крутящего момента и усилия сварки показано, что при повышении усилия внедрения инструмента сопротивление материала деформированию повышается. При сварке поперек направления прокатки исходного материала параметры крутящего момента и усилия сварки снижаются на 5…20 %. Повышение скорости сварки обеспечивает рост сопротивления материала перемещению инструмента, при этом направление сварки не оказывает значительного влияния. С повышением частоты вращения инструмента сопротивление материала деформированию снижается, а температура сварки повышается, что приводит к повышению степени пластификации материала и улучшению условий его массопереноса. Также показано, что режим сварки, позволяющий вести сварку сплава Д16 при температуре 450…500 ºС, обеспечивает степень пластификации материала, при которой получаются сварные соединения с качественной структурой и высокими механическими свойствами. В этих условиях направление сварки относительно направления прокатки исходного материала оказывает влияние: при сварке вдоль направления прокатки предел прочности соединения достигает значения 92 %, а при сварке поперек – 95 % от предела прочности исходного материала.

Об авторах

А. Н. Иванов

Email: ivan@ispms.ru
канд. техн. наук, 1. Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, Томск, 634055, Россия; 2 Новосибирский государственный технический университет, пр. К. Маркса, 20, г. Новосибирск, 630073, Россия, ivan@ispms.ru

В. Е. Рубцов

Email: rvy@ispms.ru
канд. физ.-мат. наук, 1. Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, Томск, 634055, Россия; 2 Новосибирский государственный технический университет, пр. К. Маркса, 20, г. Новосибирск, 630073, Россия, rvy@ispms.ru

Е. А. Колубаев

Email: eak@ispms.ru
доктор технических наук, 1. Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, Томск, 634055, Россия; 2 Новосибирский государственный технический университет, пр. К. Маркса, 20, г. Новосибирск, 630073, Россия, eak@ispms.ru

В. А. Бакшаев

Email: bakshaevva@mail.ru
ЗАО «Чебоксарское предприятие «Сеспель», ул. Ленинградская, 36, г. Чебоксары, 428021, Чувашская Республика, Россия, bakshaevva@mail.ru

И. Н. Ивашкин

Email: ivashkin_in@mail.ru
ЗАО «Чебоксарское предприятие «Сеспель», ул. Ленинградская, 36, г. Чебоксары, 428021, Чувашская Республика, Россия, ivashkin_in@mail.ru

Список литературы

  1. On material flow in friction stir welded Al alloys / A. Tougne, C. Desrayand, M. Jahazi, E. Feulvach // Journal of Materials Processing Technology. –2017. – Vol. 239. – P. 284–296. – doi: 10.1016/j.jmatprotec.2016.08.030.
  2. Овчинников В.В., Дриц А.М. Технологические особенности сварки трением с перемешиванием соединений алюминиевых сплавов системы Al-Mg // Наукоемкие технологии в машиностроении. – 2019. – № 3. – С. 7–20. – doi: 10.30987/article_5c7434ed5317f2.05345899.
  3. Podrzaj P., Jerman B., Klobcar D. Welding defects at friction stir welding // Metalurgija. – 2015. – Vol. 54, iss. 2. – P. 387–389.
  4. On the similarity of deformation mechanisms during friction stir welding and sliding friction of the AA5056 alloy / A. Kolubaev, A. Zaikina, O. Sizova, K. Ivanov, A. Filippov, E. Kolubaev // Russian Physics Journal. – 2018. – Vol. 60 (12). – P. 2123–2129. – doi: 10.1007/s11182-018-1335-4.
  5. Defects formation during friction stir welding: a review / N. Soni, S. Chandrashekhar, A. Kumar, V.R. Chary // International Journal of Engineering and Management Research. – 2017. – Vol. 7, iss. 3. – P. 121–125. – doi: 10.13140/RG.2.2.19381.93921.
  6. Upgrading weld quality of a friction stir welded aluminum alloys AMG6 / I.K. Chernykh, E.V. Vasil'ev, E.N. Matuzko, E.V. Krivonos // Journal of Physics: Conference Series. – 2018. – Vol. 944. – P. 012025. – doi: 10.1088/1742-6596/944/1/012025.
  7. Mishra R.S., De P.S., Kumar N. Friction stir welding and processing: science and engineering. – Cham: Springer International Publishing, 2014. – 338 p.
  8. Khokhlatova L.B., Kolobnev N.I., Ovchinnikov V.V. Properties and structure of friction stir welded joints in 1424 and V-1461 (Al–Li) alloys // Welding International. – 2018. – Vol. 32, N 1. – P. 62–66. – doi: 10.1080/09507116.2017.1382076.
  9. Petch N.J. The cleavage strength of polycrystals // Journal of the Iron & Steel Institute. – 1953. – Vol. 174. – P. 25–28.
  10. Friction–stir processed ultrafine grain high–strength Al–Mg alloy material / K.N. Kalashnikov, T.A. Kalashnikova, A.V. Chumaevskii, A.N. Ivanov, S.Yu. Tarasov, V.E. Rubtsov, E.A. Kolubaev // AIP Conference Proceedings. – 2017. – Vol. 1909. – P. 020075. – doi: 10.1063/1.5013756.
  11. EBSD analysis of friction stir welded 7136-T76 aluminum alloy / I. Kalemba, K. Muszka, M. Wróbel, S. Dymek, C. Hamilton // Solid State Phenomena. – 2013. – Vol. 203–204. – P. 258–261. – doi: 10.4028/ href='www.scientific.net/SSP.203-204.258' target='_blank'>www.scientific.net/SSP.203-204.258.
  12. High-strength friction stir processed dispersion hardened Al-Cu-Mg alloy / K.N. Kalashnikov, T.A. Kalashnikova, A.V. Chumaevskii, A.N. Ivanov, S.Yu. Tarasov, V.E. Rubtsov, E.A. Kolubaev // AIP Conference Proceedings. – 2017. – Vol. 1909. – P. 020076. – doi: 10.1063/1.5013757.
  13. Recrystallization and related annealing phenomena / F.J. Humphreys, G.S. Rohrer, A. Rollet, M. Hatherly. – 2nd ed. – Amsterdam; Boston: Elsevier, 2004. – 658 p.
  14. Багаряцкий Ю.А. Механизм искусственного старения сплава Al-Cu-Mg // Доклады Академии наук СССР. – 1952. – Т. 87. – С. 391–401.
  15. On strain-induced dissolution of θ′ and θ particles in Al–Cu binary alloy during equal channel angular pressing / Z. Liu, S. Bai, X. Zhou, Y. Gu // Materials Science and Engineering A. – 2011. – Vol. 528. – P. 2217–2222. – doi: 10.1016/j.msea.2010.12.060.
  16. Lomaev L., Elsukov E.P. Mechanisms of the strain-induced dissolution of phases in nanostructured metals // Bulletin of the Russian Academy of Sciences: Physics. – 2008. – Vol. 72, iss. 10. – P. 1419–1422. – doi: 10.3103/S1062873808100328.
  17. On the coupling between precipitation and plastic deformation in relation with friction stir welding of AA2024 T3 aluminium alloy / C. Genevois, D. Fabregue, A. Deschamps, W.J. Poole // Materials Science & Engineering A. – 2006. – Vol. 441. – P. 39–48. – doi: 10.1016/j.msea.2006.07.151.
  18. Relationship between microstructure, microhardness and corrosion sensitivity of an AA 2024–T3 friction stir welded joint / E. Bousquet, A. Poulon-Quintin, M. Puiggali, O. Devos, M. Touzet // Corrosion Science. – 2011. – Vol. 53. – P. 3026–3034. – doi: 10.1016/j.corsci.2011.05.049.
  19. Influence of process parameters on the microstructural evolution and mechanical characterisations of friction stir welded Al-Mg-Si alloy / S.O. Salih, N. Nigel, H. Ou, W. Sun // Journal of Materials Processing Technology. – 2020. – Vol. 275. – P. 116366. – doi: 10.1016/j.jmatprotec.2019.116366.
  20. Rajakumar S., Muralidharan C., Balasubramanian V. Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints // Materials and Design. – 2011. – Vol. 32. – P. 535–549. – doi: 10.1016/j.matdes.2010.08.025.
  21. Dialami N., Cervera M., Chiumenti M. Defect formation and material flow in friction stir welding // European Journal of Mechanics – A/Solids. – 2020. – Vol. 80. – P. 103912. – doi: 10.1016/j.euromechsol.2019.103912.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).