Влияние структурного состояния коррозионно-стойкой стали 12Х18Н10Т на качество поверхности после точения

Обложка

Цитировать

Полный текст

Аннотация

Введение. Развитие и постоянное совершенствование методов, технологии и оснастки для осуществления интенсивных пластических деформаций (ИПД) способствует снижению затрат на производство ультрамелкозернистых (УМЗ) материалов, обладающих улучшенными физико-механическими свойствами. Благодаря этому такие материалы становятся более доступными для применения в серийном производстве различных изделий. Одним из самых распространенных методов получения готовых металлических изделий является обработка резанием, в частности точением. Однако на данный момент существует недостаток информации о влиянии структурного состояния УМЗ-материалов на качественные характеристики обработанной поверхности. Цель работы: исследование влияния структурного состояния, сформированного методами ИПД, коррозионно-стойкой стали 12Х18Н10Т на качество механической обработки её поверхности при точении. В работе исследованы образцы из сплава 12Х18Н10Т в состоянии поставки и после структурообразования с применением современного металлорежущего инструмента и оборудования, а также рекомендуемых режимов резания. Методами исследования являются механические испытания на сжатие и растяжение, просвечивающая электронная микроскопия, оптическая металлография, лазерная сканирующая микроскопия. Результаты и обсуждение. На основе полученных экспериментальных результатов можно заключить, что ИПД является действенным способом повышения качества механической обработки поверхности при точении хромоникелевой коррозионно-стойкой стали марки 12Х18Н10Т. В частности, структурообразование методами ИПД приводит к значительному (в 1,14…1,9 раза) снижению параметра шероховатости Sa и еще более существенному (в 1,33…4,4 раза) снижению параметра Sz. При этом АВС-прессование с последующей прокаткой является более эффективным методом ИПД для обеспечения наилучшего соотношения качества обработки и высокой механической прочности. Полученные результаты указывают на большой потенциал использования изделий из объемных УМЗ-материалов в промышленности за счет возможности сочетания в них высоких механических свойств и качества механической размерной обработки. Полученные данные могут быть применены при проектировании технологических процессов механической обработки коррозионно-стойкой стали 12Х18Н10Т с ультрамелкозернистой структурой в условиях серийного машиностроительного производства.

Об авторах

Н. Н. Шамарин

Email: shamarin.nik@gmail.com
Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, shamarin.nik@gmail.com

А. В. Филиппов

Email: Andrey.V.Filippov@yandex.ru
канд. техн. наук, Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, Andrey.V.Filippov@yandex.ru

С. Ю. Тарасов

Email: tsy@ispms.ru
доктор техн. наук, Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия; Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия, tsy@ispms.ru

О. А. Подгорных

Email: poa-3@mail.ru
Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия, poa-3@mail.ru

В. Р. Утяганова

Email: filaret_2012@mail.ru
Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, filaret_2012@mail.ru

Список литературы

  1. Shintani T., Murata Y. Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of X-ray diffraction // Acta Materialia. – 2011. – Vol. 59. – P. 4314–4322. – doi: 10.1016/j.actamat.2011.03.055.
  2. Microstructure evolution in nano/submicron grained AISI 301LN stainless steel / S. Rajasekhara, L.P. Karjalainen, A. Kyröläinen, P.J. Ferreira // Materials Science and Engineering: A. – 2010. – Vol. 527. – P. 1986–1996. – doi: 10.1016/j.msea.2009.11.037.
  3. Ultrahigh strength nano/ultrafine-grained 304 stainless steel through three-stage cold rolling and annealing treatment / G.S. Sun, L.X. Du, J. Hu, H. Xie, H.Y. Wu, R.D.K. Misra // Materials Characterization. – 2015. – Vol. 110. – P. 228–235. – doi: 10.1016/j.matchar.2015.11.001.
  4. The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel / A. Hedayati, A. Najafizadeh, A. Kermanpur, F. Forouzan // Journal of Materials Processing Technology. – 2010. – Vol. 210, N 8. – P. 1017–1022. – doi: 10.1016/j.jmatprotec.2010.02.010.
  5. Ning J. Inverse determination of Johnson – Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search // The International Journal of Advanced Manufacturing Technology. – 2018. – Vol. 99. – P. 1131-1140. – doi: 10.1007/s00170-018-2508-6.
  6. Chertovskikh V. Cuttability of UFG titanium BT1-0 obtained by ECAE // Russian Engineering Research. – 2007. – Vol. 27. – P. 260–264. – doi: 10.3103/S1068798X0705005X.
  7. Huang Y., Morehead M. Study of machining-induced microstructure variations of nanostructured/ultrafine-grained copper using XRD // Journal of Engineering Materials and Technology. – 2011. – Vol. 133. – P. 021007. – doi: 10.1115/1.4003105.
  8. Surface integrity analysis when milling ultrafine-grained steels / A.R. Rodrigues, O. Balancin, J. Gallego, C.L.F. De Assis, H. Matsumoto, F.B. De Oliveira, S.R.D.S. Moreira, O.V. Da Silva Neto // Materials Research. – 2012. – Vol. 15. – P. 125–130. – doi: 10.1590/S1516-14392011005000094.
  9. Assis C.L.F. de, Jasinevicius R.G., Rodrigues A.R. Micro end-milling of channels using ultrafine-grained low-carbon steel // International Journal of Advanced Manufacturing Technology. – 2015. – Vol. 77. – P. 1155–1165. – doi: 10.1007/s00170-014-6503-2.
  10. Machining characteristics of fine grained AZ91 Mg alloy processed by friction stir processing / G.V.V. Surya Kiran, K.H. Krishna, S. Sameer, M. Bhargavi, B.S. Kumar, G.M. Rao, Y. Naidubabu, R. Dumpala, B.R. Sunil // Transactions of Nonferrous Metals Society of China. – 2017. – Vol. 27. – P. 804–811. – doi: 10.1016/S1003-6326(17)60092-X.
  11. Mechanical properties and machinability of 6061 aluminum alloy produced by equal-channel angular pressing / Y. Bayat Asl, M. Meratian, A. Emamikhah, R. Mokhtari Homami, A. Abbasi // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. – 2015. – Vol. 229. – P. 1302–1313. – doi: 10.1177/0954405414535921.
  12. Surface roughness evaluation after machining wear resistant hard coats / K. Monkova, P. Monka, J. Cesanek, J. Matejka, V. Duchek // MATEC Web of Conferences. – 2017. – Vol. 137. – P. 03008. – doi: 10.1051/matecconf/201713703008.
  13. Study of a tap failure at the internal threads machining / P. Monka, K. Monkova, V. Modrak, S. Hric, P. Pastucha // Engineering Failure Analysis. – 2019. – Vol. 100. – P. 25–36. – doi: 10.1016/j.engfailanal.2019.02.035.
  14. Surface machining after deposition of wear resistant hard coats by high velocity oxygen fuel technology / K. Monkova, P. Monka, J. Matejka, M. Novak, J. Cesanek, V. Duchek, M. Urban // Manufacturing Technology. – 2017. – Vol. 17 (6). – P. 919–925.
  15. Comparative study of chip formation in orthogonal and oblique slow-rate machining of EN 16MnCr5 steel / K. Monkova, P. Monka, A. Sekerakova, L. Hruzik, A. Burecek, M. Urban // Metals. – 2019. – Vol. 9 (6). – P. 698. – doi: 10.3390/met9060698.
  16. Филиппов А.В., Филиппова Е.О. Объемные ультрамелкозернистые материалы от структурообразования к формообразованию // СТИН. – 2018. – № 1. – С. 6–10.
  17. Оценка 2D параметров шероховатости и волнистости поверхности после обработки резанием сплава АМг2 с ультрамелкозернистой структурой. Ч. 1. Точение / А.В. Филиппов, С.Ю. Тарасов, Н.Н. Шамарин, О.А. Подгорных, Е.О. Филиппова // СТИН. – 2018. – № 7. – С. 20–24.
  18. Оценка 2D параметров шероховатости и волнистости поверхности после обработки резанием сплава АМг2 с ультрамелкозернистой структурой. Ч. 2. Фрезерование / А.В. Филиппов, С.Ю. Тарасов, О.А. Подгорных, Н.Н. Шамарин, Е.О. Филиппова, А.В. Воронцов // СТИН. – 2018. – № 12. – С. 32–35.
  19. Влияние объемной интенсивной пластической деформации на шероховатость фрезерованной поверхности коррозионно-стойкой стали 12Х18Н10Т / А.В. Филиппов, С.Ю. Тарасов, О.А. Подгорных, Н.Н. Шамарин, С.В. Фортуна, Е.О. Филиппова, А.В. Воронцов // СТИН. – 2019. – № 6. – С. 35–38.
  20. Morehead M., Huang Y., Hartwig K.T. Machinability of ultrafine-grained copper using tungsten carbide and polycrystalline diamond tools // International Journal of Machine Tools and Manufacture. – 2007. – Vol. 47, iss. 2. – P. 286–293. – doi: 10.1016/j.ijmachtools.2006.03.014.
  21. Constitutive modeling of ultra-fine-grained titanium flow stress for machining temperature prediction / J. Ning, V. Nguyen, Y. Huang, K.T. Hartwig, S.Y. Liang // Bio-Design and Manufacturing. – 2019. – Vol. 2, N 3. – P. 153–160. – doi: 10.1007/s42242-019-00044-9.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).