Низкоэнергетическая механическая обработка порошка нестехиометрического карбида титана

Обложка

Цитировать

Полный текст

Аннотация

Введение. В связи с расширяющимся практическим значением нестехиометрических карбидов титана TiCх в различных областях техники и в медицине важное значение имеют исследования как способов получения порошка карбида титана, так и его свойств в широком диапазоне изменения стехиометрии. Одним из эффективных способов воздействия на физико-механические свойства порошковых систем является их механическая обработка. При ударно-сдвиговом воздействии, реализующемся при обработке в шаровой мельнице, порошковой системе передается механическая энергия, в результате чего происходит ее измельчение, формирование центров с повышенной активностью на вновь образованных поверхностях, возможна реализация фазовых превращений, деформация кристаллической решетки, аморфизация, образование дефектов и т. п. Цель работы: исследование влияния низкоэнергетической механической обработки в шаровой мельнице на структуру, фазовый состав и параметры тонкой кристаллической структуры нестехиометрического порошка карбида титана, полученного восстановлением оксида титана углеродом и кальцием. Материалы и методы. Исследовали порошок карбида титана TiC, полученный карбидно-кальциевым восстановлением оксида титана. Порошок подвергали механической обработке в шаровой мельнице барабанного типа. Структуру порошков до и после обработки изучали на  растровом электронном микроскопе Philips SEM 515. Площадь удельной поверхности определяли методом БЭТ. Фазовый состав и параметры тонкой кристаллической структуры порошковых материалов исследовали методом рентгенофазового и рентгеноструктурного анализа. Результаты и обсуждение. В работе установлено, что увеличение продолжительности механической обработки в шаровой мельнице нестехиометрического порошка карбида титана TiC0,7 приводит к увеличению площади удельной поверхности порошка с 0,6 до 3,4 м2/г, а рассчитанный из нее средний размер частиц уменьшается с 2 мкм до 360 нм. Показано, что в процессе обработки порошка нестехиометрического карбида титана TiC0,7 происходит изменение его структурно фазового состояния. Частицы порошка состоят из двух структурных составляющих с различным атомным отношением углерода к титану: TiC0,65 и TiC0,48. Механическая обработка порошка карбида титана приводит к уменьшению микронапряжений кристаллической решетки TiCx и размеров ОКР с 55 до 30 нм для фазы TiC0,48. А для фазы TiC0,65 с увеличением продолжительности механической обработки, так же как и для TiC0,48, размер ОКР понижается, а уровень микроискажений кристаллической решетки растет. Это свидетельствует о том, что в процессе механической обработки происходит не только измельчение частиц порошка, но и увеличение их дефектности.

Об авторах

Т. Ю. Саблина

Email: sabtat@ispms.tsc.ru
канд. техн. наук, Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, Томск, 634055, Россия, sabtat@ispms.tsc.ru

И. Н. Севостьянова

Email: sevir@ispms.tsc.ru
канд. техн. наук, 1. Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, Томск, 634055, Россия; 2. Национальный исследовательский Томский государственный университет, пр. Ленина, 36, г. Томск, 634050, Россия, sevir@ispms.tsc.ru

Список литературы

  1. Ortner H.M., Ettmayer P., Kolaska H. The history of the technological progress of hardmetals // International Journal of Refractory Metals and Hard Materials. – 2014. – Vol. 44. – P. 148–159. – doi: 10.1016/j.ijrmhm.2013.07.014.
  2. Li Y.-L., Takamasa I. Incongruent vaporization of titanium carbide in thermal plasma // Materials Science and Engineering: A. – 2003. – Vol. 345, iss. 1–2. – P. 301–308. – doi: 10.1016/S0921-5093(02)00506-3.
  3. Lee D.W., Alexandrovskii S.V., Kim B.K. Novel synthesis of substoichiometric ultrafine titanium carbide // Materials Letters. – 2004. – Vol. 58, iss. 9. – P. 1471–1474. – doi: 10.1016/j.matlet.2003.10.011.
  4. Synthesis of titanium carbide from a composite of TiO2, nanoparticles/methyl cellulose by carbothermal reduction / Y. Gotoh, K. Fujimura, M. Koike, Y. Ohkoshi, M. Nagura, K. Akamatsu, S. Deki // Materials Research Bulletin. – 2001. – Vol. 36, iss. 13–14. – P. 2263–2275. – doi: 10.1016/S0025-5408(01)00713-9.
  5. Formation of TiN, TiC and TiCN by metal plasma immersion ion implantation and deposition / P. Huber, D. Manova, S. Mandl, B. Rauschenbach // Surface and Coatings Technology. – 2003. – Vol. 174–175. – P. 1243–1247. – doi: 10.1016/S0257-8972(03)00458-4.
  6. Lengauer W. Transition metal carbides, nitrides, and carbonitrides // Handbook of ceramic hard materials / ed. by R. Riedel. – Weinheim: Wiley-VCH Verlag GmbH, 2000. – Ch. 7. – P. 238–241. – DOI: 10.1002 / 9783527618217.ch7.
  7. Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications / M.I. Jones, I.R. McColl, D.M. Grant, K.G. Parker, T.L. Parker // Journal of Biomedical Materials Research. – 2000. – Vol. 52, iss. 2. – P. 413–421. – doi: 10.1002/1097-4636(200011)52:23.0.CO;2-U.
  8. Экспериментальная оценка биосовместимости нового СВС-материала на основе карбида титана со сквозной пористостью на культурах мезенхимальных стволовых клеток костного мозга человека / И.М. Байриков, А.П. Амосов, О.В. Тюмина и др. // Вопросы челюстнолицевой, пластической хирургии, имплантологии и клинической стоматологии. – 2011. – № 1–2. – C. 23–27.
  9. Application of the powder of porous titanium carbide ceramics to a reusable adsorbent for environmental pollutants / H. Moriwaki, S. Kitajima, K. Shirai, K. Kiguchi, O. Yamada // Journal of Hazardous Materials. – 2011. – Vol. 185, iss. 2–3. – P. 725–731. – doi: 10.1016/j.jhazmat.2010.09.079.
  10. Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption / G. Youshin, R. Dash, J. Jagiello, J.E. Fisher, Y. Gogotsi // Advanced Functional Materials. – 2006. – Vol. 16. – P. 2288–2293. – doi: 10.1002/adfm.200500830.
  11. Role of mechanical activation in SHS synthesis of TiC / F. Magnalia, U. Anselmi-Tamburini, C. Deidda, F. Delogu, G. Cocco, Z.A. Munir // Journal of Materials Science. – 2004. – Vol. 39. – P. 5227–5230. – doi: 10.1023/B:JMSC.0000039215.28545.2f.
  12. Crystal growth of TiC grains during SHS reactions / B. Cochepina, V. Gauthiera, D. Vrelb, S. Dubois // Journal of Crystal Growth. – 2007. – Vol. 304. – P. 481–486. – doi: 10.1016/j.jcrysgro.2007.02.018.
  13. Tong L., Reddy R.G. Synthesis of titanium carbide nano-powders by thermal plasma // Scripta Materialia. – 2005. – Vol. 52, iss. 12. – P. 1253–1258. – doi: 10.1016/j.scriptamat.2005.02.033.
  14. Dewan M.A.R., Zhang G., Ostrovski O. Carbothermal reduction of titania in different gas atmospheres // Metallurgical and Materials Transactions: B. – 2009. – Vol. 40. – P. 62–69. – doi: 10.1007/s11663-008-9205-z.
  15. Woo Y., Kang H., Kim D.J. Formation of TiC particle during carbothermal reduction of TiO2 // Journal of the European Ceramic Society. – 2007. – Vol. 27, iss. 2–3. – P. 719–722. – doi: 10.1016/j.jeurceramsoc.2006.04.090.
  16. Grove D.E., Gupta U., Castleman A.W. Effect of carbon concentration on changing the morphology of titanium carbide nanoparticles from cubic to cubooctahedron // ACS Nano. – 2010. – Vol. 4. – P. 49–54. – DOI: 10.1021 / nn901041.
  17. Preiss H., Berger L.M., Schultze D. Studies on the carbothermal preparation of titanium carbide from different gel precursors // Journal of the European Ceramic Society. – 1999. – Vol. 19, iss. 2. – P. 195–206. – doi: 10.1016/S0955-2219(98)00190-3.
  18. Preparation of titanium carbide powders by sol–gel and microwave carbothermal reduction methods at low temperature / H. Zhang, F. Li, Q. Jia, G. Ye // Journal of Sol-Gel Science and Technology. – 2008. – Vol. 46. – P. 217–222. – doi: 10.1007/s10971-008-1697-0.
  19. A simple method of synthesis and surface purification of titanium carbide powder / S. Dyjak, M. Norek, M. Polanski, S. Cudzilo, J. Bystrzycki // International Journal of Refractory Metals and Hard Materials. – 2013. – Vol. 38. – P. 87–91. – doi: 10.1016/j.ijrmhm.2013.01.004.
  20. Fu Z., Koc R. Pressureless sintering of submicron titanium carbide powders // Ceramics International. – 2017. – Vol. 43, iss. 18. – P. 17233–17237. – doi: 10.1016/j.ceramint.2017.09.050.
  21. Tong L., Reddy R.G. Synthesis of titanium carbide nano-powders by thermal plasma // Scripta Materialia. – 2005. – Vol. 52, iss. 12. – P. 1253–1258. – doi: 10.1016/j.scriptamat.2005.02.033.
  22. Preparation of titanium carbide powders by carbothermal reduction of titania/charcoal at vacuum condition / W. Sen, H. Sun, B. Yang, B. Xu, W. Ma, D. Liu, Y. Dai // International Journal of Refractory Metals and Hard Materials. – 2010. – Vol. 28, iss. 5. – P. 628–632. – doi: 10.1016/j.ijrmhm.2010.06.005.
  23. Фазовые превращения беспорядок-порядок и электросопротивление нестехиометрического карбида титана / В.Н. Липатников, А. Коттар, Л.В. Зуева, А.И. Гусев // Физика твердого тела. – 1998. – T. 40, № 7. – C. 1332–1340.
  24. Кипарисов С.С., Левинский Ю.В., Петров А.П. Карбид титана: получение, свойства, применение. – М.: Металлургия, 1987. – 215 с.
  25. Kurlov A.S., Gusev A.I. High-energy milling of nonstoichiometric carbides: effect of nonstoichiometry on particle size of nanopowders // Journal of Alloys and Compounds. – 2014. – Vol. 582. – P. 108–118. – doi: 10.1016/j.jallcom.2013.08.008.
  26. Горбачева Т.Б. Рентгенография твердых сплавов. – М.: Металлургия, 1985. – 205 с.
  27. Effect of mechanical treatment on properties of Si-Al-O zeolites / A.Y. Buzimov, W. Eckl, L.A. Gömze, I. Kocserha, E. Kurovics, A.S. Kulkov, S.N. Kulkov // Építoanyag – Journal of Silicate Based and Composite Materials. – 2018. – Vol. 70, iss. 1. – P. 23–26. – doi: 10.14382/epitoanyag-jsbcm.2018.5.
  28. Peculiarities of the formation of high-defect states in mechanocomposites and powders of niobium and aluminum under severe deformation in planetary ball mills / I.A. Ditenberg, A.N. Tyumentsev, K.I. Denisov, M.A. Korchagin // Physical Mesomechanics. – 2013. – Vol. 16. – P. 84–92. – doi: 10.1134/S1029959913010098.
  29. Абдульменова Е.В., Кульков С.Н.. Влияние механической активации порошка ВК-8 на свойства спеченных твердых сплавов // Обработка металлов (технология, оборудование, инструменты). – 2021. – Т. 23, № 1. – С. 68–78. – doi: 10.17212/1994-6309-2021-23.1-68-78.
  30. Boldyrev V.V. Mechanochemistry and mechanical activation of solids // Russian Chemical Reviews. – 2006. – Vol. 75, iss. 3. – P. 177–189. – doi: 10.1070/RC2006v075n03ABEH001205.
  31. Urakaev F.K., Boldyrev V.V. Mechanism and kinetics of mechanochemical processes in comminuting devices // Powder Technology. – 2000. – Vol. 107, iss. 1–2. – P. 93–107. – doi: 10.1016/s0032-5910(99)00175-8.
  32. Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen // Kolloidchemie Ein Lehrbuch. – Berlin; Heidelberg: Springer, 1912. – P. 387–409. – doi: 10.1007/978-3-662-33915-2_7.
  33. Stokes A.R., Wilson A.J.C. The diffraction of X-rays by distorted crystal aggregates // Proceedings of the Physical Society. – 1944. – Vol. 56 (3). – P. 174–181. – doi: 10.1088/0959-5309/56/3/303.
  34. Салтыков С.А. Стереометрическая металлография. – М.: Металлургия, 1970. – 376 с.
  35. High-energy ball-milling combined with annealing of TiC powders and its influence on the microstructure and mechanical properties of the TiC-based cermets / H. Xiong, Z. Li, X. Gan, L. Chai, K. Zhou // Materials Science and Engineering: A. – 2017. – Vol. 694. – P. 33–40. – doi: 10.1016/j.msea.2017.03.092.
  36. Xiong H., Li Z., Zhou K. TiC whisker reinforced ultra-fine TiC-based cermets: microstructure and mechanical properties // Ceramics International. – 2016. – Vol. 42, iss. 6. – P. 6858–6867. – doi: 10.1016/j.ceramint.2016.01.069.
  37. Влияние механической обработки на структуру и свойства порошка нестехиометрического карбида титана / М.В. Григорьев, Л.М. Молчунова, С.П. Буякова, С.Н. Кульков // Известия высших учебных заведений. Физика. – 2013. – Т. 56, № 7-2. – С. 206–210.
  38. Ремпель А.А. Эффекты атомно-вакансионного упорядочения в нестехиометрических карбидах // Успехи физических наук. – 1996. – Т. 166, № 1. – С. 32–62.
  39. Гусев А.И. Превращение беспорядок-порядок и фазовые равновесия в сильно нестехиометрических соединениях // Успехи физических наук. – 2000. – Т. 170, № 1. – С. 3–40.
  40. Гусев А.И. Нестехиометрия и сверхструктуры // Успехи физических наук. – 2014. – Т. 184, № 9. – С. 905–945.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».