Синтез трехкомпонентного сплава на основе алюминия методом селективного лазерного плавления

Обложка

Цитировать

Полный текст

Аннотация

Введение. Технология селективного лазерного плавления является одной из ключевых технологий в Индустрии 4.0, которая позволяет изготовить изделия любой сложной геометрической формы, значительно снизить количество применяемого материала, сократить время выполнения заказа и получить новый сплав из элементарных порошков в процессе плавления. Для понимания процесса образования сплава при лазерном воздействии  необходимо знать исходные данные порошков, которые существенно влияют на качество получаемых изделий. Целью данного исследования является определение требований к структурно-фазовому состоянию, элементному составу порошков алюминия, кремния и магния и дальнейшей подготовки смеси порошковой композиции Al-Si-Mg (Al – 91 масс.%, Si – 8 масс. %, Mg – 1 масс. %) для лазерного синтеза. Методами рентгеноструктурного и рентгенофазового анализа проведены исследования исходных порошков алюминия ПА-4 ГОСТ 6058–73, кремния ГОСТ 2169–69 и магния МПФ-4 ГОСТ 6001–79 и порошковой композиции Al-Si-Mg. Исследованиями растровых электронных изображений определены форма и размеры частиц. Методом селективного лазерного плавления из порошковой композиции получены образцы при постоянном и импульсном воздействии лазера. Композиция подготовлена посредством перемешивания порошков в шаровой мельнице Результаты и обсуждение. Исследования показали, что исходные порошки алюминия, кремния  и магния однофазны. Для получения порошковой композиции выбран диапазон размера частиц 20…64 мкм, рекомендованный для селективного лазерного плавления. При перемешивании порошков в течение одного часа были получены частицы сферической формы, которая является предпочтительной для лазерного плавления. Результаты шлифования образцов после лазерного плавления показали, что наибольшая механическая прочность была у образцов, полученных при постоянном воздействии лазера при следующих параметрах режима: P = 80 Вт, V = 300 мм/с, s = 90 мкм, h =25 мкм. Выводы. Описанное исследование показывает возможность синтеза изделий из порошковой композиции алюминия, кремния и магния методом селективного лазерного плавления.

Об авторах

Н. А. Сапрыкина

Email: saprikina@tpu.ru
канд. техн. наук, доцент, Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия, saprikina@tpu.ru

В. В. Чебодаева

Email: vtina5@mail.ru
канд. техн. наук, Институт физики прочности и материаловедения Сибирского отделения Российской академии наук, пр. Академический, 2/4, г. Томск, 634055, Россия, vtina5@mail.ru

А. А. Сапрыкин

Email: sapraa@tpu.ru
канд. техн.х наук, Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия, sapraa@tpu.ru

Ю. П. Шаркеев

Email: sharkeev@ispms.tsc.ru
доктор физ.-мат. наук, профессор, ИФПМ СО РАН, sharkeev@ispms.tsc.ru

Е. А. Ибрагимов

Email: egor83rus@tpu.ru
Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия, egor83rus@tpu.ru

Т. С. Гусева

Email: tsh2@tpu.ru
Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, г. Томск, 634050, Россия, tsh2@tpu.ru

Список литературы

  1. Khajavi S.H., Partanen J., Hölmstrom J. Additive manufacturing in the spare parts supply chain // Computers in Industry. – 2014. – Vol. 65. – P. 50–63.
  2. Post heat treatment of additive manufactured AlSi10Mg: on silicon morphology, texture and small-scale properties / F. Alghamdi, X. Song, A. Hadadzadeh, B. Shalchi-Amirkhiz, M. Mohammadi, M. Haghshenas // Materials Science and Engineering A. – 2020. – Vol. 783. – P. 139296.
  3. Yadollahi A., Shamsaei N. Additive manufacturing of fatigue resistant materials: challenges and opportunities // International Journal of Fatigue. – 2017. – Vol. 98. – P. 14–31.
  4. Advances in laser additive manufacturing of Ti-Nb alloys: from nanostructured powders to bulk objects / M.A. Khimich, K.A. Prosolov, T. Mishurova, S. Evsevleev, X. Monforte, A.H. Teuschl, P. Slezak, E.A. Ibragimov, A.A. Saprykin, Z.G. Kovalevskaya, A.I. Dmitriev, G. Bruno, Y.P. Sharkeev // Nanomaterials. – 2021. – Vol. 11 (5). – P. 1159.
  5. Additive manufacturing of metallic components – process, structure and properties / T. Debroy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang // Progress in Materials Science. – 2018. – Vol. 92. – P. 112–224.
  6. D printing of aluminum alloys: additive manufacturing of aluminum alloys using selective laser melting / N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague // Progress in Materials Science. – 2019. – Vol. 106. – P. 100578.
  7. Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM) / N.E. Uzan, R. Shneck, O. Yeheskel, N. Frage // Materials Science and Engineering A. – 2017. – Vol. 704. – P. 229–237.
  8. Reducing porosity in AlSi10Mg parts processed by selective laser melting / N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck // Additive Manufacturing. – 2014. – Vol. 1–4. – P. 77–86.
  9. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy / K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung // Acta Materialia. – 2014. – Vol. 62. – P. 141–155.
  10. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges / W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah // Applied Physics Reviews. – 2015. – Vol. 2 (4). – P. 41304. – doi: 10.1063/1.4937809.
  11. Saprykina N.A., Saprykin A.A., Arkhipova D.A. Influence of shielding gas and mechanical activation of metal powders on the quality of surface sintered layers // IOP Conference Series: Materials Science and Engineering. – 2016. – Vol. 125 (1). – P. 012016.
  12. Comparison of microstructure and mechanical properties of Scalmalloy® produced by selective laser melting and laser metal deposition / M. Awd, J. Tenkamp, M. Hirtler, S. Siddique, M. Bambach, F. Walther // Materials. – 2017. – Vol. 11. – P. 1–17.
  13. High power selective laser melting (HPSLM) of aluminum parts / D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. Bültmann // Physics Procedia. – 2011. – Vol. 12. – P. 271–278.
  14. Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy / S. Griffiths, M.D. Rossell, J. Croteau, N.Q. Vo, D.C. Dunand, C. Leinenbach // Materials Characterization. – 2018. – Vol. 143. – P. 34–42.
  15. Lu Z., Zhang L.J. Thermodynamic description of the quaternary Al-Si-Mg-Sc system and its application to the design of novel Sc-additional A356 alloys // Materials and Design. – 2017. – Vol. 116. – P. 427–437.
  16. Zhang D. Processing of advanced materials using high-energy mechanical milling // Progress in Materials Science. – 2004. – Vol. 49. – P. 537–560.
  17. Gu D., Wang H., Zhang G. Selective laser melting additive manufacturing of Ti-based nanocomposites: the role of nanopowder metal // Metallurgical and Materials Transactions A. – 2014. – Vol. 45. – P. 464–476.
  18. Selective laser melting of the Ti–(40–50) wt.% Nb alloy / Y.P. Sharkeev, A.I. Dmitriev, A.G. Knyazeva, A.Yu. Eroshenko, A.A. Saprykin, M.A. Khimich, E.A. Ibragimov, I.A. Glukhov, A.M. Mairambekova, A.Y. Nikonov // High Temperature Material Processes. – 2017. – Vol. 21 (2). – P. 161–183.
  19. Selective laser melting of magnesium / А.А. Saprykin, Y.P. Sharkeev, N.А. Saprykina, E.A. Ibragimov // Key Engineering Materials. – 2020. – Vol. 839. – P. 144–149.
  20. Laser additive manufacturing of metallic components: materials, processes and mechanisms / D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe // International Materials Reviews. – 2012. – Vol. 57. – P. 133–164. – doi: 10.1179/1743280411Y.0000000014.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».