Экспериментальные исследования режимов скоростного шлифования рельсов

Обложка

Цитировать

Полный текст

Аннотация

Введение. Шлифование рельсов в условиях железнодорожного пути является приоритетным направлением по продлению его жизненного цикла за счет своевременного удаления дефектов на поверхности катания и формирования требуемого поперечного профиля. На сегодняшний день в России используется 14 рельсошлифовальных поездов марки РШП-48. При этом у большинства рельсошлифовальных поездов заканчивается срок эксплуатации. Поэтому разработка принципиально нового рельсошлифовального поезда с повышенной производительностью является актуальной задачей. В СГУПС ведутся работы совместно с Калужским заводом «Ремпутьмаш» по созданию нового рельсошлифовального поезда РШП 2.0. В основу рельсошлифовального поезда РШП 2.0 положена технология скоростного шлифования рельсов, которая основана на повышении рабочей скорости рельсошлифовального поезда за счет увеличения частоты вращения шлифовальных кругов и задания им угла атаки. Цель работы: исследование режимов шлифования рельсов на специально разработанной установке УРШ, реализующей технологию скоростного шлифования рельсов за счет увеличения частоты вращения шлифовальных кругов до 5000 об/мин. Методы исследования. Контроль частоты вращения шлифовальных кругов производился электронным тахометром ИТ-5-ЧМ «Термит» и лазерным тахометром «Мегеон 18005». Измерение угла атаки шлифовального круга осуществлялось цифровым трехосевым акселерометром-инклинометром АЦт 90. Оценка усилия прижатия шлифовального круга к рельсу проводилась тензорезисторными датчиками М50-0,5-С3. Измерение поперечного профиля головки рельса до и после шлифования и оценку съема металла осуществляли рельсовым профилографом ПР-03. Контроль ширины дорожки шлифования производился штангенциркулем ШЦЦ-I-300-0,01. Шероховатость поверхности образца рельса после механической обработки измерялась портативным прибором TR200. Результаты и обсуждение. По результатам исследований на УРШ установлены параметры рабочего оборудования проектируемого рельсошлифовального поезда, реализующего технологию скоростного шлифования рельсов, а также установлено влияние режимов шлифования на формирование параметров качества обработанной поверхности рельса и определены оптимальные значения усилий прижатия шлифовального круга к рельсу.

Об авторах

А. С. Ильиных

Email: asi@stu.ru
доктор техн. наук, доцент, Сибирский государственный университет путей сообщения, ул. Дуси Ковальчук, 191, 630049, Россия, asi@stu.ru

А. С. Пикалов

Email: pikalov.2023@internet.ru
канд. техн. наук, Центр инфраструктурных технологий АО «СТМ», Москва, Подкопаевский переулок, д. 4Б, 109028, Россия, pikalov.2023@internet.ru

В. К. Милорадович

Email: vmiloradovich@internet.ru
Центр инфраструктурных технологий АО «СТМ», Москва, Подкопаевский переулок, д. 4Б, 109028, Россия, vmiloradovich@internet.ru

М. С. Галай

Email: galayms@mail.ru
канд. техн. наук, Сибирский государственный университет путей сообщения, ул. Дуси Ковальчук, 191, 630049, Россия, galayms@mail.ru

Список литературы

  1. Fan W., Liu Y., Li J. Development status and prospect of rail grinding technology for high speed railway // Journal of Mechanical Engineering. – 2018. – Vol. 54, iss. 22. – P. 184–193. – doi: 10.3901/JME.2018.22.184.
  2. Schoch W. Grinding of rails on high-speed railway lines: a matter of great importance // Rail Engineering International. – 2007. – Vol. 36, iss. 1. – P. 6–8.
  3. Funke H. Rail grinding. – Berlin: Transpress, 1986. – 153 p.
  4. Cuervo P., Santa J., Toro A. Correlations between wear mechanisms and rail grinding operations in a commercial railroad // Tribology International. – 2015. – Vol. 2. – P. 265–273. – doi: 10.1016/j.triboint.2014.06.025.
  5. Long term rail surface damage considering maintenance interventions / V. Krishna, S. Hossein-Nia, C. Casanueva, S. Stichel // Wear. – 2020. – Vol. 460–461. – P. 203462. – doi: 10.1016/j.wear.2020.203462.
  6. Application of grinding to reduce rail side wear in straight track / J. Ding, R. Lewis, A. Beagles, J. Wang // Wear. – 2018. – Vol. 402–403. – P. 71–79. – doi: 10.1016/j.wear.2018.02.001.
  7. Ilinykh A., Matafonov A., Yurkova E. Efficiency of the production process of grinding rails on the basis of optimizing the periodicity of works // Advances in Intelligent Systems and Computing. – 2019. – Vol. 1116. – P. 672–681. – doi: 10.1007/978-3-030-37919-3_67.
  8. Ильиных А.С. Скоростное шлифование рельсов в пути // Мир транспорта. – 2011. – № 3. – С. 56–61.
  9. Повышение производительности рельсошлифовальных поездов методом скоростного шлифования / А.С. Ильиных, А.С. Пикалов, М.С. Галай, В.К. Милорадович // Известия высших учебных заведений. Северо-Кавказский регион. Технические науки. – 2022. – № 4 (216). – С. 46–56. – doi: 10.17213/15603644202244656.
  10. Doman D., Warkentin A., Bauer R. A survey of recent grinding wheel topography models // International Journal of Machine Tools & Manufacture. – 2006. – Vol. 46, iss. 3. – P. 343–352. – doi: 10.1016/j.ijmachtools.2005.05.013.
  11. Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics / W. Zenga, Z. Lib, Z. Peib, C. Treadwell // International Journal of Machine Tools & Manufacture. – 2005. – Vol. 45, iss. 12–13. – P. 1468–1473.
  12. Jeong W., Shin J. Grinding effect analysis according to control variables of compact rail surface grinding machine // Journal of the Korean Society for Railway. – 2020. – Vol. 23, iss. 7. – P. 688–695. – doi: 10.7782/JKSR.2020.23.7.688.
  13. Koshin A.A., Chaplygin B.A., Isakov D.V. Adequacy of the operating conditions of abrasive grains // Russian Engineering Research. – 2011. – Vol. 31, N 12. – P. 1221–1226.
  14. Особенности формирования технологического процесса плоского шлифования торцом круга при упругой подвеске шлифовальной головки / А.С. Ильиных, В.А. Аксенов, М.С. Галай, А.В. Матафонов // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. – 2016. – Т. 18, № 4. – C. 34–47. – doi: 10.15593/2224-9877/2016.4.03.
  15. A laboratory demonstration of rail grinding and analysis of running roughness and wear / M. Mesaritis, M. Shamsa, P. Cuervo, J. Santa, A. Toro, M. Marshall, R. Lewis // Wear. – 2020. – Vol. 456–457. – doi: 10.1016/j.wear.2020.203379.
  16. Satoh Y., Iwafuchi K. Effect of rail grinding on rolling contact fatigue in railway rail used in conventional line in Japan // Wear. – 2008. – Vol. 265, iss. 9–10. – P. 1342–1348. – doi: 10.1016/j.wear.2008.02.036.
  17. Modelling and simulation of the grinding force in rail grinding that considers the swing angle of the grinding stone / K. Zhou, H. Ding, S. Zhang, J. Guo, Q. Liu, W. Wang // Tribology International. – 2019. – Vol. 137. – P. 274–288. – doi: 10.1016/j.triboint.2019.05.012.
  18. Experimental investigation on material removal mechanism during rail grinding at different forward speeds / K. Zhou, H. Ding, R. Wang, J. Yang, J. Guo, Q. Liu, W. Wang // Tribology International. – 2020. – Vol. 143. – P. 106040. – doi: 10.1016/j.triboint.2019.106040.
  19. Influence of rail grinding process parameters on rail surface roughness and surface layer hardness / E. Uhlmann, P. Lypovka, L. Hochschild, N. Schröer // Wear. – 2016. – Vol. 366–367. – P. 287–293. – doi: 10.1016/j.wear.2016.03.023.
  20. Jeong W., Shin J. Grinding effect analysis according to control variables of compact rail surface grinding machine // Journal of the Korean Society for Railway. – 2020. – Vol. 23, iss. 7. – P. 688 – 695. – doi: 10.7782/JKSR.2020.23.7.688.
  21. Ilinykh A.S. Design of abrasive tool for high-rate grinding // IOP Conference Series: Earth and Environmental Science. – 2017. – Vol. 53. – P. 012024. – doi: 10.1088/1755-1315/53/1/012024.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».