Влияние продолжительности боромеднения на толщину диффузионного слоя и микротвердость углеродистых и легированных сталей

Обложка

Полный текст

Аннотация

Введение. Боромеднение – один из способов химико-термической обработки (ХТО), направленный на получение диффузионных слоев с высокими физико-механическими свойствами на поверхности углеродистых и легированных сталей. Толщина диффузионного слоя является наиболее важной характеристикой ХТО, которая определяет глубину упрочнения. Следовательно, интенсивность и основные характеристики процесса ХТО (толщина слоя, распределение концентрации легирующего элемента) будут зависеть от условий проведения процесса (температуры, времени выдержки и количества легирующего элемента). Целью настоящей работы является определение температурно-временных параметров диффузионного боромеднения, способствующих получению диффузионных слоев с максимальной толщиной. В работе рассмотрены результаты исследований по упрочнению углеродистых и легированных сталей (на примере стали 45, У10 и 5ХНМ) нагревом в порошковых насыщающих смесях, содержащих бор и медь.  Процесс боромеднения проводили в герметичных контейнерах с порошковой насыщающей смесью, состоящей из карбида бора, оксида меди и фторида натрия в качестве активатора при температуре 950 °С, в течение 3…5 ч. Полученные образцы с диффузионным слоем исследовали на оптическом и растровом электронном микроскопе (РЭМ); определены микротвердость, элементный и фазовый состав слоев, а также шероховатость полученных поверхностей. Результаты и обсуждения. Исследована микроструктура полученных диффузионных слоев, показаны диаграммы изменения толщины слоев и распределения микротвердости по глубине диффузионных слоев. Установлено, что при увеличении времени выдержки с 3 до 5 часов толщина диффузионного слоя возрастает от 120 до 170 мкм на стали 45; от 110 до 155 мкм на стали У10 и от 130 до 230 мкм на стали 5ХНМ. Выявлено постепенное снижение концентрации бора и меди по толщине слоя с 15…16 % и 2…3 % на поверхности соответственно до нулевых значений на границе с основным металлом. Установлено, что процесс боромеднения приводит к созданию более протяженных по глубине боридных слоев на поверхности углеродистых и легированных сталей по сравнению с чистым борированием. Причем увеличение продолжительности выдержки при проведении процесса способствует наибольшему увеличению толщины слоя на стали 5ХНМ. Проведено исследование микрогеометрии, показаны микротопографии и профилограммы поверхностей образцов до и после боромеднения. Установлено, что шероховатость после боромеднения увеличивается в 2-3 раза по сравнению с исходной, а увеличение продолжительности процесса при этом не оказывает существенного влияния на шероховатость.

Об авторах

С. А. Лысых

Email: lysyh.stepa@yandex.ru
Институт физического материаловедения Сибирского отделения Российской академии наук, ул. Сахьяновой 6, г. Улан-Удэ, 670047, Россия, lysyh.stepa@yandex.ru

В. Н. Корнопольцев

Email: kompo@mail.ru
канд. техн. наук, Байкальский институт природопользования Сибирского отделения Российской академии наук, ул. Сахьяновой 6, г. Улан-Удэ, 670047, Россия, kompo@mail.ru

У. Л. Мишигдоржийн

Email: undrakh@ipms.bscnet.ru
канд. техн. наук, Институт физического материаловедения Сибирского отделения Российской академии наук, ул. Сахьяновой 6, г. Улан-Удэ, 670047, Россия, undrakh@ipms.bscnet.ru

Ю. П. Хараев

Email: kharaev@inbox.ru
доктор техн. наук, доцент, Восточно-Сибирский государственный университет технологий и управления, ул. Ключевская 40В, г. Улан-Удэ, 670013, Россия, kharaev@inbox.ru

А. Г. Тихонов

Email: tihonovalex90@mail.ru
Иркутский национальный исследовательский технический университет, ул. Лермонтова 83, г. Иркутск, 664074, Россия, tihonovalex90@mail.ru

В. В. Иванцивский

Email: ivancivskij@corp.nstu.ru
доктор техн. наук, Доцент, Новосибирский государственный технический университет, пр. К. Маркса, 20, г. Новосибирск, 630073, Россия, ivancivskij@corp.nstu.ru

Н. В. Вахрушев

Email: vah_nikit@mail.ru
Новосибирский государственный технический университет, пр. К. Маркса, 20, г. Новосибирск, 630073, Россия, vah_nikit@mail.ru

Список литературы

  1. Busby P.E., Warga M.E., Wells C. Diffusions and solubility of boron in iron and steel // JOM. – 1953. – Vol. 5. – P. 1463–1468. – doi: 10.1007/BF03397637.
  2. Boriding of steel: improvement of mechanical properties – a review / M. Prince, G. Surya Raj, D. Yaswanth Kumar, P. Gopalakrishnan // High Temperature Material Processes. – 2022. – Vol. 26 (2). – P. 43–89. – doi: 10.1615/HighTempMatProc.2022041805.
  3. Шевчук Е.П., Плотников В.А., Бектасова Г.С. Диффузия бора при борировании углеродистой стали // Известия Алтайского государственного университета. – 2021. – № 1 (117). – С. 64–65. – doi: 10.14258/izvasu(2021)1-10.
  4. FeB/Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics / L.G. Yu, X.J. Chen, K.A. Khor, G. Sundararajan // Acta Materialia. – 2005. – Vol. 53. – P. 2361–2368. – doi: 10.1016/j.actamat.2005.01.043.
  5. A microstructure comparison of Iron borides formed on AISI 1040 and D2 steels / J. Bernal-Ponce, A. Irvin-Martinez, E. Vera-Cardenas, A. Garcia-Barrientos, A. Medina-Flores, L. Bejar-Gomez, S. Borjas-Garcia // Microscopy and Microanalysis. – 2015. – Vol. 21, suppl. 3. – P. 1759–1760. – doi: 10.1017/S1431927615009575.
  6. Мишустин Н.М., Иванайский В.В., Ишков А.В. Состав, структура и свойства износостойких покрытий, полученных на сталях 65Г и 50ХГА при скоростном ТВЧ-борировании // Известия Томского политехнического университета. – 2012. – Т. 320, № 2. – С. 68–72.
  7. Балановский А.Е., Ву В. Плазменная поверхностная цементация с использованием графитового покрытия // Письма о материалах. – 2017. – Т. 7, № 2. – С. 175–179. – doi: 10.22226/2410-3535-2017-2-175-179.
  8. Comparative evaluation of austenite grain in high-strength rail steel during welding, thermal processing and plasma surface hardening / A.D. Kolosov, V.E. Gozbenko, M.G. Shtayger, S.K. Kargapoltsev, A.E. Balanovskiy, A.I. Karlina, A.V. Sivtsov, S.A. Nebogin // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560. – doi: 10.1088/1757-899X/560/1/012185.
  9. Study of matrix and rare elements in ash and slag waste of a thermal power plant concerning the possibility of their extraction / T.G. Cherkasova, E.V. Cherkasova, A.V. Tikhomirova, N.V. Gilyazidinova, R.V. Klyuev, N.V. Martyushev, A.I. Karlina, V.Yu. Skiba // Metallurgist. – 2022. – Vol. 65 (11–12). – P. 1324–1330. – doi: 10.1007/s11015-022-01278-2.
  10. Influence of welding regimes on structure and properties of steel 12KH18N10T weld metal in different spatial positions / R.A. Mamadaliev, P.V. Bakhmatov, N.V. Martyushev, V.Yu. Skeeba, A.I. Karlina // Metallurgist. – 2022. – Vol. 65 (11–12). – P. 1255–1264. – doi: 10.1007/s11015-022-01271-9.
  11. Alloying and modification of iron-carbon melts with natural and man-made materials / O.I. Nokhrina, R.A. Gizatulin, M.A. Golodova, I.E. Proshunin, D.V. Valuev, N.V. Martyushev, A.I. Karlina // Metallurgist. – 2022. – Vol. 65 (11–12). – P. 1429–1448. – doi: 10.1007/s11015-022-01289-z.
  12. Strengthening of metallurgical equipment parts by plasma surfacing in nitrogen atmosphere / N.N. Malushin, N.V. Martyushev, D.V. Valuev, A.I. Karlina, A.P. Kovalev, R.A. Gizatulin // Metallurgist. – 2022. – Vol. 65 (11–12). – P. 1468–1475. – doi: 10.1007/s11015-022-01292-4.
  13. Balanovskiy A.E., Van Huy V. Estimation of wear resistance of plasma-carburized steel surface in conditions of abrasive wear // Journal of Friction and Wear. – 2018. – Vol. 39. – P. 311–318. – doi: 10.3103/S1068366618040025.
  14. Surface hardening of structural steel by cathode spot of welding arc / A.Е. Balanovskiy, M.G. Shtayger, А.I. Karlina, S.K. Kargapoltsev, V.E. Gozbenko, Yu.I. Karlina, A.S. Govorkov, B.O. Kuznetsov // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560. – P. 012138. – doi: 10.1088/1757-899X/560/1/012138.
  15. Nguyen V.T., Astafeva N.A., Balanovskiy A.E. Study of the formation of the alloyed surface layer during plasma heating of mixtures of Cu-Sn CrXCY alloys // Tribology in Industry. – 2021. – Vol. 43. – P. 386–396. – doi: 10.24874/ti.1070.03.21.05.
  16. Non-vacuum electron-beam boriding of low-carbon steel / I.A. Bataev, A.A. Bataev, M.G. Golkovsky, A.Yu. Teplykh, V.G. Burov, S.V. Veselov // Surface and Coatings Technology. – 2012. – Vol. 207. – P. 245–253. – doi: 10.1016/j.surfcoat.2012.06.081.
  17. Structure of surface layers produced by non-vacuum electron beam boriding / I.A. Bataev, A.A. Bataev, M.G. Golkovski, D.S. Krivizhenko, A.A. Losinskaya, O.G. Lenivtseva // Applied Surface Science. – 2013. – Vol. 284, iss. 2. – P. 472–481. – doi: 10.1016/j.apsusc.2013.07.121.
  18. Microstructure and wear behavior of tungsten hot-work steel after boriding and boroaluminizing / U. Mishigdorzhiyn, Y. Chen, N. Ulakhanov, H. Liang // Lubricants. – 2020. – Vol. 8, iss. 3. – P. 26. – doi: 10.3390/lubricants8030026.
  19. Microstructural and mechanical properties of B-Cr coatings formed on 145Cr6 tool steel by laser remelting of diffusion borochromized layer using diode laser / A. Bartkowska, D. Bartkowski, D. Przestacki, J. Hajkowski, A. Miklaszewski // Coatings. – 2021. – Vol. 11. – P. 608. – doi: 10.3390/coatings11050608.
  20. Laser surface modification of boronickelized medium carbon steel / A. Bartkowska, A. Pertek, M. Kulka, L. Klimek // Optics and Laser Technology. – 2015. – Vol. 74. – P. 145–157. – doi: 10.1016/j.optlastec.2015.05.014.
  21. Исследование формирования диффузионных слоев на стали 20 при одновременном насыщении бором и медью / С.А. Лысых, Ю.П. Хараев, В.Н. Корнопольцев, В.А. Бутуханов // Современные наукоемкие технологии. – 2018. – № 9. – С. 56–60. – URL: https://top-technologies.ru/ru/article/view?id=37159 (дата обращения: 06.02.2023).
  22. Формирование диффузионных слоев и исследование шероховатости при комплексном насыщении поверхности стали 5ХНМ бором и медью / С.А. Лысых, Ю.П. Хараев, В.Н. Корнопольцев, Х.С. Чжун, Б.Д. Лыгденов, А.М. Гурьев // Ползуновский вестник. – 2020. – № 3. – С. 77–82. – doi: 10.25712/ASTU.2072-8921.2020.03.013.
  23. Хараев Ю.П., Корнопольцев В.Н., Лысых С.А. Определение состава смеси при поверхностном упрочнении стали бором и медью // Ползуновский альманах. – 2016. – № 4. – С. 142–144.
  24. Модификация поверхностного слоя штамповых сталей созданием B-Al-слоев химико-термической обработкой / Н.С. Улаханов, У.Л. Мишигдоржийн, А.Г. Тихонов, А.И. Шустов, А.С. Пятых // Упрочняющие технологии и покрытия. – 2021. – Т. 1, № 12 (204). – С. 557–564. – doi: 10.36652/1813-1336-2021-17-12-557-564.
  25. Pyatykh A., Savilov A., Timofeev S. Investigation of Hadfield steel machinability in milling operations // Key Engineering Materials. – 2022. – Vol. 910. – P. 123–128. – doi: 10.4028/p-8p4ud2.
  26. Лахтин Ю.М., Арзамасов Б.Н. Химико-термическая обработка металлов. – М.: Металлургия, 1985. – 256 с.
  27. Лабунец В.Ф., Ворошнин Л.Г., Киндарчук М.В. Износостойкие боридные покрытия. – Киев: Техника, 1989. – 253 с.
  28. Гузанов Б.Н., Косицын С.В., Пугачева Н.Б. Упрочняющие защитные покрытия в машиностроении. – Екатеринбург: УрО РАН, 2004. – 244 с. – ISBN 5-7691-1405-3.
  29. Кайдаш Н.Г., Четверикова Л.Н. Структура и свойства боридосилицидных покрытий на железе и стали // Вестник Черкасского национального университета. Серия: Физико-математические науки. – 2007. – № 114. – С. 89–115.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».