Characterizing the mechanical behavior of eco-friendly hybrid polymer composites with jute and Sida cordifolia fibers

Cover Page

Cite item

Full Text

Abstract

Introduction. Recognition of the medicinal properties of plants is an integral part of traditional Indian health systems such as Unani, Siddha, Naturopathy and Ayurveda. Among others, Sida cordifolia, a member of the Malvaceae family, is especially celebrated in Ayurvedic medicine for its outstanding chemical properties. This plant grows in the subtropical and tropical climate of India and symbolizes the global shift towards more environmentally friendly materials. Given the rising environmental concerns, there is an increased demand for biodegradable and renewable resources for industrial applications, especially for reinforcing polymer matrices with natural fibers. The purpose of this study is to investigate the effectiveness of Sida cordifolia fibers combined with jute for reinforcing polylactic acid (PLA) composites. This highlights its potential to improve both environmental quality and mechanical properties of materials. Materials and method. The study involved the fabrication of four different composite specimens: : a solely 4-layered jute fiber mat, untreated Sida cordifolia fibers combined with a 4-layered jute mat, and Sida cordifolia fibers treated with benzoylation combined with a 4-layered jute mat. These composites were subjected to mechanical testing focusing on tensile strength and flexural strength. Its microstructural analysis was also carried out. Results and discussion. The results show that benzoylation-treated Sida cordifolia fibers exhibit significantly higher strength compared to its untreated counterparts. At the same time, an increase in the proportion of Sida cordifolia fibers in composites while maintaining a constant total mass correlates with an increase in the strength of the materials. These results indicate that Sida cordifolia and jute fiber-reinforced PLA composites can provide a competitive, environmentally friendly alternative to synthetic fiber-reinforced composites in a variety of industrial applications. In conclusion, treated natural fibers like Sida cordifolia can significantly improve the mechanical properties of polymer composites, supporting its use as environmentally friendly, high-performance materials in a variety of industries. This research not only promotes the use of natural fibers for commercial applications, but also contributes to the larger goal of sustainable materials science.

About the authors

B. P. Sharma

Email: bpsharma@amity.edu
ORCID iD: 0000-0002-3207-7286
Ph.D. (Engineering), Associate Professor, Department of Mechanical Engineering, Amity University Uttar Pradesh, Noida, 201313, India, bpsharma@amity.edu

R. Dewangan

Email: rdewangan@jpr.amity.edu
ORCID iD: 0000-0002-1973-6726
Ph.D. (Engineering), Associate Professor, Department of Mechanical Engineering, Amity University Rajasthan, Jaipur, 303002, India, rdewangan@jpr.amity.edu

S. S. Sharma

Email: sssharma1@gmail.com
ORCID iD: 0000-0002-1510-5871
D.Sc. (Engineering), Associate Professor, Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, 303007, India, sssharma1@gmail.com

References

  1. Ngo T.-D. Introduction to composite materials // Composite and Nanocomposite Materials: From Knowledge to Industrial Applications. – London: IntechOpen, 2020. – doi: 10.5772/intechopen.91285.
  2. Bajpai P.K., Singh I., Madaan J. Development and characterization of PLA-based green composites: a review // Journal of Thermoplastic Composite Materials. – 2014. – Vol. 27 (1). – P. 52–81. – doi: 10.1177/0892705712439571.
  3. Green composites: a review of processing technologies and recent applications / G.S. Mann, L.P. Singh, P. Kumar, S. Singh // Journal of Thermoplastic Composite Materials. – 2020. – Vol. 33 (8). – P. 1145–1171. – doi: 10.1177/0892705718816354.
  4. Li X., Tabil L.G., Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review // Journal of Polymers and the Environment. – 2007. – Vol. 15. – P. 25–33. – doi: 10.1007/s10924-006-0042-3.
  5. Bismarck A., Mishra S., Lampke T. Plant fibers as reinforcement for green composites // Natural fibers, biopolymers, and biocomposites. – CRC Press, 2005. – P. 52–128.
  6. Natural fibre composites and their applications: a review / P. Peças, H. Carvalho, H. Salman, M. Leite // Journal of Composites Science. – 2018. – Vol. 2 (4). – doi: 10.3390/jcs2040066.
  7. Polymer composite materials: a comprehensive review / R. Hsissou, R. Seghiri, Z. Benzekri, M. Hilali, M. Rafik, A. Elharfi // Composite Structures. – 2021. – Vol. 262. – doi: 10.1016/j.compstruct.2021.113640.
  8. Physicochemical properties of new cellulosic fibers from the bark of Acacia arabica / P. Senthamaraikannan, S.S. Saravanakumar, V.P. Arthanarieswaran, P. Sugumaran // International Journal of Polymer Analysis and Characterization. – 2016. – Vol. 21 (6). – P. 548–553. – doi: 10.1080/1023666X.2016.1177699.
  9. Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites / W. Liu, A.K. Mohanty, L.T. Drzal, P. Askel, M. Misra // Journal of Materials Science. – 2004. – Vol. 39 (3). – P. 1051–1054.
  10. Characterization of new natural cellulosic fiber from heteropogon contortus plant / N.R.J. Hyness, N.J. Vignesh, P. Senthamaraikannan, S.S. Saravanakumar, M.R. Sanjay // Journal of Natural Fibers. – 2018. – Vol. 15 (1). – P. 146–153. – doi: 10.1080/15440478.2017.1321516.
  11. On the microstructure and physical properties of untreated raffia textilis fiber / R.G. Elenga, G.F. Dirras, J. Goma Maniongui, P. Djemia, M.P. Biget // Composites, Part A: Applied Science and Manufacturing. – 2009. – Vol. 40 (4). – P. 418–422. – doi: 10.1016/j.compositesa.2009.01.001.
  12. Characterization of new natural cellulosic fiber from the bark of dichrostachys cinerea / P.G. Baskaran, M. Kathiresan, P. Senthamaraikannan, S.S. Saravanakumar // Journal of Natural Fibers. – 2018. – Vol. 15 (1). – P. 62–68. – doi: 10.1080/15440478.2017.1304314.
  13. Phyto-pharmacological properties of Sida cordifolia: a review of folklore use and pharmacological activities / N. Khurana, N. Sharma, S. Patil, A. Gajbhiye // Asian Journal of Pharmaceutical and Clinical Research. – 2016. – Vol. 9 (suppl. 2). – P. 52–58. – doi: 10.22159/ajpcr.2016.v9s2.13698.
  14. Effect of chemical treatment on dynamic mechanical properties of sisal fiber-reinforced polyester composites fabricated by resin transfer molding / P.A. Sreekumar, R. Saiah, J.M. Saiter, N. Leblanc, K. Joseph, G. Unnikrishnan, S. Thomas // Composite Interfaces. – 2008. – Vol. 15 (2–3). – P. 263–279. – doi: 10.1163/156855408783810858.
  15. Jayaramudu J., Guduri B.R., Varada Rajulu A. Characterization of new natural cellulosic fabric Grewia tilifolia // Carbohydrate Polymers. – 2010. – Vol. 79 (4). – P. 847–851. – doi: 10.1016/j.carbpol.2009.10.046.
  16. Shakya A., Chatterjee S.S., Kumar V. Efficacies of fumaric acid and its mono and di-methyl esters in rodent models for analgesics and anti-inflammatory agents // EC Pharmaceutical Science. – 2015. – Vol. 1 (2). – P. 76–88.
  17. Extraction and characterization of natural cellulose fibers from maize tassel / C.E. Maepa, J. Jayaramudu, J.O. Okonkwo, S.S. Ray, E.R. Sadiku, J. Ramontja // International Journal of Polymer Analysis and Characterization. – 2015. – Vol. 20 (2). – P. 99–109. – doi: 10.1080/1023666X.2014.961118.
  18. Indran S., Edwin Raj R., Sreenivasan V.S. Characterization of new natural cellulosic fiber from Cissus quadrangularis root // Carbohydrate Polymers. – 2014. – Vol. 110. – P. 423–429. – doi: 10.1016/j.carbpol.2014.04.051.
  19. Sindhu R., Pandey A., Binod P. Alkaline treatment // Pretreatment of biomass: processes and technologies. – Elsevier, 2015. – P. 51–60. – doi: 10.1016/B978-0-12-800080-9.00004-9.
  20. Characterization of new cellulosic fiber from the stem of Sida rhombifolia / R. Gopinath, K. Ganesan, S.S. Saravanakumar, R. Poopathi // International Journal of Polymer Analysis and Characterization. – 2016. – Vol. 21 (2). – P. 123–129. – doi: 10.1080/1023666X.2016.1117712.
  21. Characterization of a novel natural cellulosic fiber from Juncus effusus L. / M. Maache, A. Bezazi, S. Amroune, F. Scarpa, A. Dufresne // Carbohydrate Polymers. – 2017. – Vol. 171. – P. 163–172. – doi: 10.1016/j.carbpol.2017.04.096.
  22. Characterization of natural cellulosic fiber from Epipremnum aureum stem / M.V. Maheshwaran, N.R.J. Hyness, P. Senthamaraikannan, S.S. Saravanakumar, M.R. Sanjay // Journal of Natural Fibers. – 2018. – Vol. 15 (6). – P. 789–798. – doi: 10.1080/15440478.2017.1364205.
  23. Prithiviraj M., Muralikannan R. Investigation of optimal alkali-treated perotis indica plant fibers on physical, chemical, and morphological properties // Journal of Natural Fibers. – 2022. – Vol. 19 (7). – P. 2730–2743. – doi: 10.1080/15440478.2020.1821291.
  24. Boubacar Laougé Z., Merdun H. Pyrolysis and combustion kinetics of Sida cordifolia L. using thermogravimetric analysis // Bioresource Technology. – 2020. – Vol. 299. – doi: 10.1016/j.biortech.2019.122602.
  25. Poly (lactic Acid): a versatile biobased polymer for the future with multifunctional properties-From monomer synthesis, polymerization techniques and molecular weight increase to PLA applications / E. Balla, V. Daniilidis, G. Karlioti, T. Kalamas, M. Stefanidou, N.D. Bikiaris, A. Vlachopoulos, I. Koumentakou, D.N. Bikiaris // Polymers. – 2021. – Vol. 13 (11). – doi: 10.3390/polym13111822.
  26. Extraction of plant based natural fibers – a mini review / D. Mohankumar, V. Amarnath, V. Bhuvaneswari, S.P. Saran, K. Saravanaraj, M. Srinivasa Gogul, S. Sridhar, G. Kathiresan, L. Rajeshkumar // IOP Conference Series: Materials Science and Engineering. – 2021. – Vol. 1145 (1). – P. 012023. – doi: 10.1088/1757-899X/1145/1/012023.
  27. Mohanty A.K., Misra M., Drzal L.T. Surface modifications of natural fibers and performance of the resulting biocomposites: an overview // Composite Interfaces. – 2001. – Vol. 8 (5). – P. 313–343. – doi: 10.1163/156855401753255422.
  28. Nair K.C.M., Thomas S., Groeninckx G. Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres // Composites Science and Technology. – 2001. – Vol. 61 (16). – P. 2519–2529. – doi: 10.1016/S0266-3538(01)00170-1.
  29. Joseph K., Thomas S., Pavithran C. Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites // Polymer. – 1996. – Vol. 37 (23). – P. 5139–5149. doi: 10.1016/0032-3861(96)00144-9.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».