Comparative evaluation of roller burnishing of Al6061-T6 alloy under dry and nanofluid minimum quantity lubrication conditions

Cover Page

Cite item

Full Text

Abstract

Introduction. Roller burnishing is one of the most popular methods for improving the surface quality of a workpiece, increasing its wear resistance, microhardness and corrosion resistance. During the processing, the workpiece is compressed and smoothed under the pressure of hardened roller. Purpose of the work. The results of the research show that the introduction of minimum quantity lubrication (MQL) during roller burnishing makes it possible to increase the efficiency of the process by reducing friction and improving lubrication. Studies have shown that the use of nanofluids under MQL conditions improves the machining performance. However, very little attention has been paid to the roll burnishing of Al6061-T6 alloy under nano minimum quantity lubrication (NFMQL) conditions. The methods of investigation. In light of this, this study compares the performance of roll burnishing of Al6061-T6 alloy under dry friction conditions and NFMQL conditions. The microhardness, roundness, and surface roughness are evaluated, modeled, and optimized in the study by considering the cutting speed, feed rate, and number of passes. Based on the experimental results, mathematical models are established to predict the surface roughness, microhardness, and roundness deviation. Results and Discussion. The developed models of surface roughness, microhardness and roundness deviation show the R-square value higher than 0.9, which allows these models to be confidently used to predict the studied responses under dry friction conditions and under NFMQL conditions within the parameter domain selected in this work. According to this study, the machining performed in four passes at a cutting speed of 357 rpm and a tool feed of 0.17 mm/rev can obtain the lowest roundness deviation (3.514 μm), the best microhardness (130.19 HV) and the lowest surface roughness (0.64 μm). Further, the study shows that increasing the number of passes (more than four) does not lead to a significant improvement in surface roughness or microhardness. However, it leads to a slight increase in roundness deviation. Therefore, it is recommended to use a maximum of four passes during roll burnishing of Al6061-T6 aluminum alloy specimens under dry friction conditions to achieve optimal results. The obtained results imply that roller burnishing can effectively improve the overall surface quality and hardness of the workpiece. In addition, roller burnishing is regarded as an affordable method to enhance the functionality and strength of the machined parts by reducing the occurrence of surface defects such as scratches and cracks. It is found that the surface roughness decreases with the increase of the cutting speed. However, it is observed to increase under both dry friction and NFMQL conditions when the cutting speed is increased to 360–380 rpm. Moreover, it is found to decrease with the increase of the feed and the number of passes. But after three or four passes at a feed rate of 0.2–0.25 mm/rev, a noticeable increase in the surface roughness is observed. It is noticed that with the increase of the feed, the microhardness and the roundness deviation increase. In addition, as the number of passes increases, the roundness deviation decreases and the microhardness increases. The number of passes under dry friction condition and feed rate under NFMQL rolling has significant effects on the surface roughness. The cutting speed seems to have the greatest effect on the microhardness, followed by feed rate and the number of passes. On the other hand, the effect of increasing microhardness under NFMQL conditions seems to be stronger. Under dry friction condition, the cutting speed has a significant effect on the roundness deviation, and under NFMQL conditions, the feed rate has an effect.

About the authors

A. Somatkar

Email: avinash.somatkar@viit.ac.in
ORCID iD: 0000-0002-2885-2104
D.Sc. (Engineering), Professor, 1. Department of Mechanical Engineering, Vishwakarma Institute of Information Technology, Pune, 411048, India; 2. Mechanical Engineering Department, Sri Satya Sai University of Technology & Medical Science, Sehore, Madhya Pradesh, 466001, India, avinash.somatkar@viit.ac.in

R. Dwivedi

Email: rashmidwivedi29@gmail.com
ORCID iD: 0000-0002-9755-5330
D.Sc. (Engineering), Professor, Mechanical Engineering Department, Sri Satya Sai University of Technology & Medical Science, Sehore, Madhya Pradesh, 466001, India, rashmidwivedi29@gmail.com

S. Chinchanikar

Email: satish.chinchanikar@viit.ac.in
ORCID iD: 0000-0002-4175-3098
D.Sc. (Engineering), Professor, Department of Mechanical Engineering, Vishwakarma Institute of Technology, Pune, 411037, India, satish.chinchanikar@viit.ac.in

References

  1. Ball burnishing application for finishing sculptured surfaces in multi-axis machines / A. Rodríguez, L.N. López de Lacalle, A. Celaya, A. Fernández, A. Lamikiz // International Journal of Mechatronics and Manufacturing Systems. – 2011. – Vol. 4. – P. 220–237. – doi: 10.1504/IJMMS.2011.041470.
  2. Saffar S., Eslami H. Increasing the fatigue life and surface improvement of AL7075 alloy T6 by using ultrasonic ball burnishing process // International Journal of Surface Science and Engineering. – 2022. – Vol. 16 (3). – P. 181–206. – doi: 10.1504/IJSURFSE.2022.125438.
  3. Somatkar A.A., Dwivedi R., Chinchanikar S. Enhancing surface integrity and quality through roller burnishing: a comprehensive review of parameters optimization, and applications // Communications on Applied Nonlinear Analysis. – 2024. – Vol. 31 (1s). – P. 51–69. – doi: 10.52783/cana.v31.563.
  4. Artificial neural network-based optimization of operating parameters for minimum quantity lubrication-assisted burnishing process in terms of surface characteristics / T.-T. Nguyen, T.-A. Nguyen, Q.-H. Trinh, X.-B. Le, L.-H. Pham, X.-H. Le // Neural Computing and Applications. – 2022. – Vol. 34 (9). – P. 7005–7031. – doi: 10.1007/s00521-021-06834-6.
  5. Nguyen T.-T. Multi-response performance optimization of burnishing operation for improving hole quality // Journal of the Brazilian Society of Mechanical Sciences and Engineering. – 2021. – Vol. 43 (12). – P. 560. – doi: 10.1007/s40430-021-03274-0.
  6. Shirsat U., Ahuja B., Dhuttargaon M. Effect of burnishing parameters on surface finish // Journal of the Institution of Engineers (India): Series C. – 2017. – Vol. 98. – P. 431–436. – doi: 10.1007/s40032-016-0320-3.
  7. Kurkute V., Chavan S.T. Modeling and optimization of surface roughness and microhardness for roller burnishing process using response surface methodology for Aluminum 63400 alloy // Procedia Manufacturing. – 2018. – Vol. 20. – P. 542–547. – doi: 10.1016/j.promfg.2018.02.081.
  8. Patel K.A., Brahmbhatt P.K. Response surface methodology-based desirability approach for optimization of roller burnishing process parameter // Journal of the Institution of Engineers (India): Series C. – 2018. – Vol. 99. – P. 729–736. – doi: 10.1007/s40032-017-0368-8.
  9. Prasad K.A, John M.R.S. Optimization of external roller burnishing process on magnesium silicon carbide metal matrix composite using response surface methodology // Journal of the Brazilian Society of Mechanical Sciences and Engineering. – 2021. – Vol. 43 (7). – P. 342. – doi: 10.1007/s40430-021-03069-3
  10. Using specially designed high-stiffness burnishing tool to achieve high-quality surface finish / B. Tadic, P.M. Todorovic, O. Luzanin, D. Miljanic, B.M. Jeremic, B. Bogdanovic, D. Vukelic // The International Journal of Advanced Manufacturing Technology. – 2013. – Vol. 67. – P. 601–611. – doi: 10.1007/s00170-012-4508-2.
  11. El-Khabeery M.M., El-Axir M.H. Experimental techniques for studying the effects of milling roller-burnishing parameters on surface integrity // International Journal of Machine Tools and Manufacture. – 2001. – Vol. 41 (12). – P. 1705–1719. – doi: 10.1016/S0890-6955(01)00036-0.
  12. Development and burnishing characteristics of roller burnishing method with rolling and sliding effects / M. Okada, S. Suenobu, K. Watanabe, Y. Yamashita, N. Asakawa // Mechatronics. – 2015. – Vol. 29. – P. 110–118. – doi: 10.1016/j.mechatronics.2014.11.002.
  13. Surface layer modification by cryogenic burnishing of Al 7050-T7451 alloy and validation with FEM-based burnishing model / B. Huang, Y. Kaynak, Y. Sun, I.S. Jawahir // Procedia CIRP. – 2015. – Vol. 31. – P. 1–6. – doi: 10.1016/j.procir.2015.03.097.
  14. Caudill J., Schoop J., Jawahir I.S. Correlation of surface integrity with processing parameters and advanced interface cooling/lubrication in burnishing of Ti-6Al-4V alloy // Advances in Materials and Processing Technologies. – 2019. – Vol. 5 (1). – P. 53–66. – doi: 10.1080/2374068X.2018.1511215.
  15. Rotella G., Rinaldi S., Filice L. Roller burnishing of Ti6Al4V under different cooling/lubrication conditions and tool design: effects on surface integrity // The International Journal of Advanced Manufacturing Technology. – 2020. – Vol. 106 (1). – P. 431–440. – doi: 10.1007/s00170-019-04631-z.
  16. Kulkarni P., Chinchanikar S. A review on machining of nickel-based superalloys using nanofluids under minimum quantity lubrication (NFMQL) // Journal of the Institution of Engineers (India): Series C. – 2023. – Vol. 104 (1). – P. 183–199. – doi: 10.1007/s40032-022-00905-w.
  17. Kulkarni P., Chinchanikar S. Modeling turning performance of Inconel 718 with hybrid nanofluid under MQL using ANN and ANFIS // Frattura ed Integrità Strutturale. – 2024. – Vol. 18 (70). – P. 71–90. – doi: 10.1080/2374068X.2024.2307103.
  18. Kulkarni P., Chinchanikar S. Machining effects and multi-objective optimization in Inconel 718 turning with unitary and hybrid nanofluids under MQL // Frattura ed Integrità Strutturale. – 2024. – Vol. 18 (68). – P. 222–241. – doi: 10.3221/IGF-ESIS.68.15.
  19. Kulkarni P., Chinchanikar S. Machinability of Inconel 718 using unitary and hybrid nanofluids under minimum quantity lubrication // Advances in Materials and Processing Technologies. – 2024. – P. 1–29. – doi: 10.1080/2374068X.2024.2307103.
  20. Двиведи Р., Соматкар А., Чинчаникар С. Моделирование и оптимизация процесса накатывания роликом Al6061-T6 для достижения минимального отклонения от круглости, минимальной шероховатости поверхности и повышения ее микротвердости // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 3. – С. 52–65. – doi: 10.17212/1994-6309-2024-26.3-52-65.
  21. Чинчаникар С., Гейдж М.Г. Моделирование рабочих характеристик и мультикритериальная оптимизация при токарной обработке нержавеющей стали AISI 304 (12Х18Н10Т) резцами с износостойким покрытием и с износостойким покрытием, подвергнутым микропескоструйной обработке // Обработка металлов (технология, оборудование, инструменты). – 2023. – Т. 25, № 4. – С. 117–135. – doi: 10.17212/1994-6309-2023-25.4-117-135.
  22. Chinchanikar S., Choudhury S.K. Effect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel: an optimization approach // Measurement. – 2013. – Vol. 46 (4). – P. 1572–1584. – doi: 10.1016/j.measurement.2012.11.032.
  23. Gaikwad V.S., Chinchanikar S. Mechanical behaviour of friction stir welded AA7075-T651 joints considering the effect of tool geometry and process parameters // Advances in Materials and Processing Technologies. – 2022. – Vol. 8 (4). – P. 3730–3748. – doi: 10.1080/2374068X.2021.1976554.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».