Methods for diagnostics and forecasting SMEs creditworthiness using artificial intelligence
- Authors: Zabolotskaya V.V.1,2
-
Affiliations:
- Peoples’ Friendship University of Russia named after Patrice Lumumba
- Kuban State University
- Issue: Vol 24, No 3 (2024)
- Pages: 294-311
- Section: Management
- URL: https://ogarev-online.ru/1994-2540/article/view/372568
- DOI: https://doi.org/10.18500/1994-2540-2024-24-3-294-311
- EDN: https://elibrary.ru/OWEQBG
- ID: 372568
Cite item
Full Text
Abstract
Introduction. The impact of multidirectional external macroeconomic and regional factors of the economic environment in conditions of uncertainty and increased risks causes significant difficulties in diagnosing, assessing and forecasting the creditworthiness of financial and credit support recipients and borrowers (micro, small and medium-sized enterprises) in the Russian Federation. Theoretical analysis. The author systematized the basic mathematical methods and models for assessing and forecasting the level of creditworthiness of micro, small and medium-sized businesses in foreign and Russian practice, using modern systems and technologies of artificial intelligence and machine learning methods. Empirical analysis. The author proposed the results of approbation of methodological approach for express diagnostics of the financial and economic condition and forecasting the creditworthiness of SMEs in the Krasnodar krai for the period of 2014–2017, based on expert assessment methods, economic analysis and fuzzy logic systems, which form the credit rating of SMEs considering their industry affiliation. Results. In this study, the author has determined the advantages and disadvantages of methods and models for diagnosing creditworthiness and credit scoring from the perspective of their application for various categories of SMEs. As it is shown that the most promising and mathematically reliable models for credit scoring and risk assessment of financial support and lending to various enterprises in the SME sector at different stages of their life cycle both in Russia and abroad are computerized models and expert systems, based on such methods and technologies of Artificial Intelligence, as fuzzy logic systems, artificial neural networks, support vector machines, ensemble methods (random forest method), as well as intelligent information systems, hybrid models and hybrid systems. The study reveals that their combination with each other will allow to achieve synergistic and system effects in the interaction between lenders and borrowers (SMEs) and timely avoid their bankruptcy.
About the authors
Victoria Viktorovna Zabolotskaya
Peoples’ Friendship University of Russia named after Patrice Lumumba; Kuban State University
ORCID iD: 0000-0002-9808-127X
Scopus Author ID: 57212610741
ResearcherId: AAB-3940-2020
6 Miklukho-Maclaya St., Moscow 117198, Russia
References
- Abdou H. A., Pointon J. Credit scoring, statistical techniques, and evaluation criteria: A review of the literature // Intelligent Systems in Accounting, Finance & Management. 2011. № 18. P. 59−88. https://doi.org/10.1002/isaf.325
- Леоненков А. В. Нечеткое моделирование в среде MATLAB и fuzzyTECH. СПб. : БХВ Петербург, 2005. 736 с.
- Арутюнян А. С., Коваленко А. В., Уртенов М. Х. Нейросетевые технологии финансово-экономического анализа : учеб. пособие. Ч. 3. Нейросетевые технологии. Краснодар : КубГТУ, 2015. 156 с. EDN: TNMJDX
- Buckley J., Feuring T., Eslami E. Fuzzy Mathematics in Economics and Engineering. Physica-Varlag. Heidelberg Physica, 2002. 272 p. https://doi.org/10.1007/978-3-7908-1795-9
- Барановская Т. П., Кармазин В. Н., Утренов М. Х., Коваленко А. В. Современные математические методы анализа финансово-экономического состояния предприятия. Краснодар : КубГАУ, 2009. 235 с. EDN: TXJWKL
- Bojadziev G., Bojadziev M. Fuzzy Logic for Business, Finance and Management. Singapore ; River Edge, NJ : World Scientifi c, 1997. 232 p. (Advances in Fuzzy Systems. Vol. 12). https://doi.org/10.1142/3312
- Zopoundisis C., Doumpos M. Multi-group discrimination using multi-criteria analysis: Illustrations from the field of finance // European Journal of Operational Research. 2002. Vol. 139, iss. 2. P. 371–389. https://doi.org/10.1016/s0377-2217(01)00360-5
- Иванищев М. В. Разработка нечетко-численного метода прогнозирования и обеспечения устойчивости предприятия в условиях неопределенности: дис. … канд. экон. наук. М., 2002. 138 c.
- Луценко Е. В., Коваленко А. В., Печурина Е. К., Уртенов М. А. Х. Открытая персональная интеллектуальная технология разработки и применения адаптивных методик оценки инвестиционной привлекательности и кредитоспособности предприятий // Вестник Пермского университета. Сер. «Экономика» = Perm University Herald. Economy. 2019. Т. 14, № 1. С. 20–50. https://doi.org/10.17072/1994-9960-2019-1-20-50, EDN: NUHIJG
- Недосекин А. О. Методологические основы моделирования финансовой деятельности с использованием нечетко-множественных описаний : дис. … д-ра экон. наук. СПб., 2003. 302 с.
- Thomas L. C. A survey of credit and behavioral scoring: Forecasting financial risk of lending to consumers // International Journal of Forecasting. 2000. Vol. 16, iss. 2. P. 149−172. https://doi.org/10.1016/S0169-2070(00)00034-0
- Маккаллок У., Питтс В. Логические исчисления идей, относящихся к нервной деятельности // Автоматы : сб. ст. / под ред. К. Э. Шеннона, Дж. Маккарти ; пер. с англ. под ред. А. А. Ляпунова М. : Иностранная литература, 1956. С. 363−384.
- Xiao-Lin L., Zhong Yu. An Overview of Personal Credit Scoring: Techniques and Future Work // International Journal of Intelligence Science. 2012. Vol. 2. P. 181−189. https://doi.org/10.4236/ijis.2012.224024
- Ciampi F., Gordini N. Small enterprise default prediction modeling through artificial neural networks: An e mpirical analysis of Italian small enterprises // Journal of Small Business Management. 2013. Vol. 51, iss. 1. P. 23–45. https://doi.org/10.1111/j.1540-627X.2012.00376.x
- Giannopoulos V., Aggelopoulos E. Predicting SME loan delinquencies during recession using accounting data and SME characteristics: The case of Greece // Intelligent Systems in Accounting, Finance and Management. 2019. Vol. 26, iss. 2. P. 71–82. https://doi.org/10.1002/isaf.145616
- M. D. N. T., Ferreira F. A. F., Pérez-Bustamante Ilander G. O., Jalali M. S. Integrating cognitive mapping and MCDA for bankruptcy prediction in small-and medium-sized enterprises // Journal of the Operational Research Society. 2017. Vol. 68, iss. 9. P. 985–997. https://doi.org/10.1057/s41274-016-0166-3
- Kim H. S., Sohn S. Y. Support vector machines for default prediction of SMEs based on technology credit / / European Journal of Operational Research. 2010. Vol. 201, iss. 3. P. 838−846. https://doi.org/10.1016/j.ejor.2009.03.036
- Abdou H. A. Genetic programming for credit scoring: The case of Egyptian public sector banks // Expert Systems with Applications. 2009. Vol. 36, iss. 9. P. 11402−11417. https://doi.org/10.1016/j.eswa.2009.01.076
- Ong C. S., Huang J. J., Tzengb G. H. Building Credit Scoring Models Using Genetic Programming // Expert Systems with Applications. 2005. Vol. 29, no. 1, pp. 41−47. https://doi.org/10.1016/j.eswa.2005.01.003
- Breiman L, Friedman J., Olshen R. A., Stone C. J. Classification and regression trees. Monterey, CA : Wadsworth & Brooks/Cole Advanced Books & Software, 1984. 358 p. https://doi.org/10.1201/9781315139470
- Lee S., Choi K., Yoo D. Predicting the Insolvency of SMEs Using Technological Feasibility Assessment Information and Data Mining Techniques // Sustainability. 2020. Vol. 12, iss. 23. Art. 9790. https://doi.org/10.3390/su12239790
- Федорова Е. А., Мусиенко С. О., Федоров Ф. Ю. Прогнозирование банкротства субъектов малого и среднего предпринимательства в России // Финансы и кредит. 2018. Т. 24, вып. 11 (779). С. 2537– 2552. https://doi.org/10.24891/fc.24.11.2537, EDN: YOVLZZ
- Brezigar-Masten A., Masten I. CART-based selection of bankruptcy predictors for the logit model // Expert Systems with Applications. 2012. Vol. 39, iss. 11. P. 10153−10159. https://doi.org/10.1016/j.eswa.2012.02.125
- Zadeh L. A. Fuzzy Sets // Information and Control. 1965. Vol. 8. P. 338−353. https://doi.org/10.1016/S0019-9958(65)90241-X
- Yazdi A. K., Hanne T., Wang Y. J., Wee H. A Credit Rating Model in a Fuzzy Inference System Environment // Algorithms. 2019. Vol. 12, iss. 7. P. 1−15. https://doi.org/10.3390/a12070139
- Заболоцкая В. В. Финансово-кредитное обеспечение деятельности субъектов малого предпринимательства в России и за рубежом. Краснодар : КубГУ, 2013. 207 с. EDN: UYUEZB
- Шевченко И. В., Кармазин А. В., Коваленко А. В. Комплексная оценка кредитоспособности предприятия малого и среднего бизнеса с помощью нечеткой продукционной системы // Финансовая аналитика. Проблемы и решения. 2008. № 2 (2). С. 81–86. EDN: ICKFDB
- Ендронова В. Н., Хасянова С. Ю. Модели анализа кредитоспособности заемщиков // Финансы и кредит. 2002. № 6 (96). С. 9−15.
- Balcaen S., Ooghe H. Alternative methodologies in studies on business failure: Do they produce better results than the classical statistical methods? // Vlerick Leuven Gent Management School Working Paper Series (16). Vlerick Leuven Gent Management School, 2004, pp. 1–44.
Supplementary files

