Regression model for managing technical risks of production energy supply

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We explored various aspects of technical risk management in industrial energy supply, including the identification of key factors influencing the occurrence of risks, methods for analyzing and predicting technical risks, and risk management strategies to ensure production continuity. Considering regression models in the context of technical risk management will help businesses to develop effective strategies to prevent potential threats and ensure operational stability and reliability.

Full Text

Restricted Access

About the authors

R. N. Pigilova

FSBEI HE Kazan State Power Engineering University (FSBEI HE KSPEU)

Author for correspondence.
Email: rozapigilova@yandex.ru

Lecturer

Russian Federation, Kazan, Republic of Tatarstan

F. Yu. ugli Rakhmonov

FSBEI HE Kazan State Power Engineering University (FSBEI HE KSPEU)

Email: rahmonovfarhod2004@gmail.com

Student

Russian Federation, Kazan, Republic of Tatarstan

References

  1. Svalova V.B., Zaalishvili V.B., Ganapathy G.P., Ivanov P.G., Sustainable Development of Mountain Territories, 2020, vol. 12, no. 1(43), pp. 162–170. doi: 10.21177/1998-4502-2020-12-1-162-170. EDN KEZQHF.
  2. Pigilova R.N., International Journal of Advanced Studies in Computer Engineering, 2023, no. 2, pp. 31–35. EDN PPEAAW.
  3. Malysheva T.V., Kompetentnost’, 2020, no. 4, pp. 24–27.
  4. Kamasheva A.I., Pigilova R.N. Ecology and life safety, XXII Int. sc. and pract. conf., ed. by V.A. Seleznev, I.A. Lukshin, Penza, PGAU, 2022, pp. 138–141. EDN ZKUHNI.
  5. Certificate of state registration of the computer program N 2020666077 RF. Separated scalable system for collecting, processing, searching and analyzing data Technology for analyzing and collecting information TAIS N 2020665421; decl. 27.11.2020; publ. 4.12.2020, I.A. Karpov, S.A. Abakhov, M.A. Pendyukhov; applicant LLC Analytical software solutions. EDN UCIHFU.
  6. Altunin S.S., Mezhdunarodnyy nauchnyy studencheskiy zhurnal, 2019, no. 8, pp. 23–25. EDN OHQARD.
  7. Federal State Statistics Service; http://www.gks.ru/.
  8. Johnson S., Energy Management Journal, 2020, vol. 18, pp. 75–89.
  9. Spivak N.S., E-Scio, 2019, no. 6(33), pp. 742–749. EDN ZNGJRA.
  10. Bulatov T.A. Automatic analysis of the state of high-voltage electric motors in own needs system of a thermal power plant, XXVI All-Russian postgraduate and master’s scientific seminar dedicated to the Day of the power engineer, in 3 vol., gen. ed. by E.Yu. Abdullazyanov, Kazan’, KGEU, 2023, vol. 1, pp. 13–15. EDN XYZDOB.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Evolution of types of organization for determining technical risks

Download (31KB)
3. Fig. 2. Typical scheme of a technological radio network for data exchange and collection in a control system

Download (45KB)
4. Fig. 3. Factors to consider when choosing a regression model

Download (8KB)
5. Fig. 4. Energy consumption management and regression analysis of data on risky inflows from the base in multifunctional systems

Download (19KB)

Copyright (c) 2024 АСМС

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).