Progressive myopia in children and strategies for myopia control: a review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Myopia is one of the most common ocular disorders in children and adolescents, and its progressive forms are becoming a global medical and social problem. The World Health Organization predicts that myopia will affect over 5 billion people by the middle of the 21st century. Interestingly, it develops most often in school-aged children. It is critical to study the mechanisms of its progression, including genetic predisposition, accommodative dysfunction, and scleral structural changes. This review presents current data from Russian and non-Russian studies of the pathogenesis and ocular morphology in myopia. Optical, pharmacological, and surgical strategies for myopia control are discussed. Biomechanical properties of the sclera and new technologies to improve them are reviewed. The role of prophylaxis is also summarized. An analysis of current strategies shows that effective management of progressive myopia is ensured only by a comprehensive interdisciplinary approach including clinical, experimental, social, and environmental measures. The article highlights that further multicenter studies are warranted to assess the long-term safety and effectiveness of the proposed strategies. The findings are useful to both researchers and clinicians treating children with myopia.

About the authors

Diana A. Timerbulatova

Bashkir State Medical University

Author for correspondence.
Email: timerbulatova-diana@mail.ru
ORCID iD: 0009-0003-4415-4124
SPIN-code: 9976-5862

Ufa Eye Research Institute, MD

Russian Federation, Ufa

Alia S. Faizullina

Bashkir State Medical University

Email: a.faizullina@mail.ru
ORCID iD: 0000-0003-3576-9322
SPIN-code: 4027-1916

Ufa Eye Research Institute, MD, Cand. Sci. (Medicine)

Russian Federation, Ufa

References

  1. Миопия: клинические рекомендации. Москва: Министерство здравоохранения Российской Федерации, 2024. | Myopia: clinical guidelines. Moscow: Ministry of Health of the Russian Federation; 2024. Available from: http://disuria.ru/_ld/15/1568_kr24H52p1MZ.pdf (In Russ.)
  2. Аветисов Э.С. Близорукость. Москва: Медицина, 2002. | Avetisov ES. Myopia. Moscow: Meditsina; 2002. ISBN: 5-225-02764-4 (In Russ.) Available from: https://search.rsl.ru/ru/record/01000908445
  3. Xu Y, Cui L, Kong M, et al. Repeated low-level red light therapy for myopia control in high myopia children and adolescents. Ophthalmology. 2024;131(11):1314–1323. doi: 10.1016/j.ophtha.2024.05.023 EDN: HUYIPQ
  4. Kido A, Miyake M, Watanabe N. Interventions to increase time spent outdoors for preventing incidence and progression of myopia in children. Cochrane Database Syst Rev. 2024;6(6):CD013549. doi: 10.1002/14651858.CD013549.pub2
  5. Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–1042. doi: 10.1016/j.ophtha.2016.01.006
  6. Ramke J, Evans JR, Habtamu E, et al. Grand challenges in global eye health: a global prioritisation process using Delphi method. The Lancet Healthy Longevity. 2022;3(1):e31–e41. doi: 10.1016/S2666-7568(21)00302-0 EDN: WMDPIB
  7. Bullimore MA, Ritchey ER, Shah S, et al. The risks and benefits of myopia control. Ophthalmology. 2021;128(11):1561–1579. doi: 10.1016/j.ophtha.2021.04.032 EDN: ULIITU
  8. Liu XN, Naduvilath TJ, Sankaridurg PR. Myopia and sleep in children—a systematic review. SLEEP. 2023;46(11):zsad162. doi: 10.1093/sleep/zsad162 EDN: BZKWIP
  9. Foreman J, Salim AT, Praveen A, et al. Association between digital smart device use and myopia: a systematic review and meta-analysis. The Lancet Digital Health. 2021;3(12):e806–e818. doi: 10.1016/S2589-7500(21)00135-7 EDN: HHXFUJ
  10. Grzybowski A, Kanclerz P, Tsubota K, et al. A review on the epidemiology of myopia in school children worldwide. BMC Ophthalmology. 2020;20(1):1–11. doi: 10.1186/s12886-019-1220-0 EDN: WHSUAZ
  11. Williams KM, Bertelsen G, Cumberland P, et al. Increasing prevalence of myopia in europe and the impact of education. Ophthalmology. 2015;122(7):1489–1497. doi: 10.1016/j.ophtha.2015.03.018
  12. Проскурина О.В., Маркова Е.Ю., Бржеский В.В., и др. Распространённость миопии у школьников некоторых регионов России // Офтальмология. 2018. Т. 15, № 3. С. 348–353. | Proskurina OP, Markova EY, Brzheskij VV, et al. The prevalence of myopia in schoolchildren in some regions of Russia. Ophthalmology in Russia. 2018;15(3):348–353. doi: 10.18008/1816-5095-2018-3-348-353 EDN: VAEHPF
  13. Тарутта Е.П., Иомдина Е.Н., Тарасова Н.А., и др. Комплексный подход к профилактике и лечению прогрессирующей миопии у школьников // РМЖ. Клиническая офтальмология. 2018. Т. 18, № 2. С. 70–76. | Tarutta EP, Iomdina EN, Tarasova NA, et al. Complex approach to the prevention and treatment of progressive myopia in school children. Russian Journal of Clinical Ophthalmology. 2018;18(2):70–76. doi: 10.21689/2311-7729-2018-18-2-70-76 EDN: OTMVBH
  14. Tariq F, Mobeen R, Wang X, et al. Advances in myopia prevention strategies for school-aged children: a comprehensive review. Frontiers in Public Health. 2023;11:1226438. doi: 10.3389/fpubh.2023.1226438 EDN: IPLFML
  15. Милаш С.В. Периферический дефокус в клинике миопии и стратегические принципы его оптической коррекции: автореф. дис. … канд. мед. наук. Москва, 2020. | Milash SV. Peripheral defocus in the clinic of myopia and strategic principles of its optical correction [dissertation abstract]. Moscow; 2020. (In Russ.) EDN: BMJZTH
  16. Bikbov MM, Kazakbaeva GM, Fakhretdinova AA, et al. Prevalence and associated factors of myopia in children and adolescents in Russia: the Ural Children Eye Study. British Journal of Ophthalmology. 2024;108(4):593–598. doi: 10.1136/bjo-2022-322945 EDN: CSUYSP
  17. Dutheil F, Oueslati T, Delamarre L, et al. Myopia and near work: a systematic review and meta-analysis. International Journal of Environmental Research and Public Health. 2023;20(1):875. doi: 10.3390/ijerph20010875 EDN: BNBRYF
  18. Hou P, Wu D, Nie Y, et al. Comparison of the efficacy and safety of different doses of atropine for myopic control in children: a meta-analysis. Frontiers in Pharmacology. 2023;14:1227787. doi: 10.3389/fphar.2023.1227787 EDN: UEOCLU
  19. Bremond-Gignac D. Myopie de l’enfant. Médecine Sciences. 2020;36(8-9): 763–768. (In French) doi: 10.1051/medsci/2020131 EDN: KGLKNS
  20. Gifford KL, Richdale K, Kang P, et al. IMI - Clinical Management Guidelines Report. Investigative Opthalmology & Visual Science. 2019;60(3):M184–M203. doi: 10.1167/iovs.18-25977
  21. Фабрикантов О.Л., Халеева Д.В., Шутова С.В. Сравнительный анализ измерения переднезаднего отрезка глаза у детей и подростков с аномалиями рефракции // Вестник Оренбургского государственного университета. 2015. № 12. С. 253–256. | Fabrikantov OL, Khaleeva DV, Shutova SV. The comparative analysis of the anterior posterior ocular segment measurement in children and teenagers with refraction anomaly. Vestnik of the Orenburg State University. 2015;(12):253–256. EDN: VNYXAN
  22. Brennan NA, Toubouti YM, Cheng X, Bullimore MA, Efficacy in myopia control. Progress in Retinal and Eye Research. 2021;83:100923. doi: 10.1016/j.preteyeres.2020.100923
  23. Александрова Ж.Л., Шефер К.К. Анатомо-рефракционные показатели глазного яблока у детей с миопической рефракцией // Медицина. 2020. Т. 8, № 1. С. 74–81. | Aleksandrova JL, Shefer KK. Anatomical and refractive characterstics of an eyeball in children with myopia. Medicina. 2020;8(1):74–81. doi: 10.29234/2308-9113-2020-8-1-74-81 EDN: MRZBCZ
  24. Bikbov MM, Iakupova EM, Gilmanshin TR, et al. Prevalence and associations of nonglaucomatous optic nerve atrophy in high myopia. Ophthalmology. 2023;130(11):1174–1181. doi: 10.1016/j.ophtha.2023.07.014 EDN: QVYPXW
  25. Bikbov MM, Kazakbaeva GM, Zainullin RM, et al. Intraocular pressure and its associations in a Russian population: The Ural Eye and Medical Study. American Journal of Ophthalmology. 2019;204:130–139. doi: 10.1016/j.ajo.2019.02.030 EDN: LRJTCU
  26. Bikbov MM, Gilmanshin TR, Kazakbaeva GM, et al. Prevalence of myopic maculopathy among adults in a Russian population. JAMA Network Open. 2020;3(3):e200567. doi: 10.1001/jamanetworkopen.2020.0567 EDN: YBFWQT
  27. Chen S, Liu X, Sha X, et al. Relationship between axial length and spherical equivalent refraction in Chinese children. Advances in Ophthalmology Practice and Research. 2021;1(2):100010. doi: 10.1016/j.aopr.2021.100010 EDN: FCMRMU
  28. Iribarren R, Morgan IG, Hashemi H, et al. Lens power in a population-based cross-sectional sample of adults aged 40 to 64 years in the Shahroud eye study. Investigative Opthalmology & Visual Science. 2014;55(2):1031. doi: 10.1167/iovs.13-13575
  29. Wolffsohn JS, Kollbaum PS, Berntsen DA, et al. IMI – Clinical Myopia Control Trials and Instrumentation Report. Investigative Opthalmology & Visual Science. 2019;60(3):M132–M160. doi: 10.1167/iovs.18-25955
  30. Саматова Р.Р., Тажгулова Г.И. Дополнительные способы прогнозирования перехода миопии в прогрессирующую форму // Точка зрения. Восток - Запад. 2015. № 2. С. 73–74. | Samatova RR, Tazhgulova GI. Additional methods for predicting the transition of myopia to a progressive form. Point of view. East-West. 2015;(2):73–74. (In Russ.) EDN: VLQSTJ
  31. Бикбов М.М., Зайнутдинова Г.Х., Кудоярова К.И. Методы хирургического лечения прогрессирующей близорукости (обзор литературы) // Точка зрения. Восток - Запад. 2015. № 2. С. 14–17. | Bikbov MM, Zainutdinova GKh, Kudoyarova KI. Methods of surgical treatment of progressive myopia (literature review). Point of view. East-West. 2015;(2):14–17. (In Russ.) EDN: VLQSIF
  32. Аксёнова Ю.М. Связь прогрессирующей миопии с общим и местным состоянием соединительной ткани у детей и подростков: автореф. дис. … канд. мед. наук. Москва, 2018. | Aksenova Yu.M. The relationship between progressive myopia and the general and local state of connective tissue in children and adolescents [dissertation abstract]. Moscow; 2018. (In Russ.) EDN: PHHPAO
  33. Coudrillier B, Pijanka J, Jefferys J, et al. Collagen structure and mechanical properties of the human sclera: analysis for the effects of age. Journal of Biomechanical Engineering. 2015;137(4):041006. doi: 10.1115/1.4029430
  34. Sun Y, Sha Y, Yang J, et al. Collagen is crucial target protein for scleral remodeling and biomechanical change in myopia progression and control. Heliyon. 2024;10(15):e35313. doi: 10.1016/j.heliyon.2024.e35313 EDN: XGYTAM
  35. Metlapally R, Wildsoet CF. Scleral mechanisms underlying ocular growth and myopia. Progress in Molecular Biology and Translational Science. 2015;135:241–248. doi: 10.1016/bs.pmbts.2015.05.005 EDN: WNUIQZ
  36. Angle J, Wissmann DA. A statistical analysis of the biological theory of spherical error of refraction. Optometry and Vision Science. 1979;56(5):309–314. doi: 10.1097/00006324-197905000-00005
  37. Tao Y, Pan M, Liu S, et al. cAMP Level modulates scleral collagen remodeling, a critical step in the development of myopia. PLoS ONE. 2013;8(8):e71441. doi: 10.1371/journal.pone.0071441
  38. Астрелин М.Н. Современный взгляд на роль склеры в патогенезе близорукости // Медицинский вестник Башкортостана. 2017. Т. 12, № 6. С. 133–137. | Astrelin MN. Modern view on the role of the sclera in pathogenesis of myopia. Bashkortostan Medical Journal. 2017;12(6):133–137. EDN: YTBTIV
  39. Levy AM, Fazio MA, Grytz R. Experimental myopia increases and scleral crosslinking using genipin inhibits cyclic softening in the tree shrew sclera. Ophthalmic and Physiological Optics. 2018;38(3):246–256. doi: 10.1111/opo.12454 EDN: SFDODB
  40. Li X, Wu M, Zhang L, et al. Riboflavin and ultraviolet A irradiation for the prevention of progressive myopia in a guinea pig model. Experimental Eye Research. 2017;165:1–6. doi: 10.1016/j.exer.2017.08.019 EDN: YIPERZ
  41. Бикбов М.М., Бикбова Г.М., Хабибуллин А.Ф. Кросслинкинг роговичного коллагена в лечении кератоконуса // Вестник офтальмологии. 2011. Т. 127, № 5. С. 21–25. | Bikbov MM, Bikbova GM, Habiboullin AF. Corneal collagen cross-linking in keratoconus management. Russian Annals of Ophthalmology. 2011;127(5):21–25. EDN: ONOVTX
  42. Бикбов ММ, Суркова В.К. Метод перекрёстного связывания коллагена роговицы при кератоконусе. Обзор литературы // Офтальмология. 2014. Т. 11, № 3. С. 13–18. | Bikbov MM, Surkova VK. Corneal collagen crosslinking for keratoconus. A review. Ophthalmology in Russia. 2014;11(3):13–18. EDN: SQKCWV
  43. Бикбов М.М., Заболотная В.А. Результаты кросслинкинга роговичного коллагена в лечении кератоконуса // Практическая медицина. 2012. № 4-1. С. 85–86. | Bikbov MM, Zabolotnaya VA. Corneal collagen krosslinking results in keratoconus treatment. Practical Medicine. 2012;(4-1):85–86. EDN: PCAGVF
  44. Бикбов М.М., Суркова В.К., Зайнутдинова Г.Х., и др. Влияние кросслинкинга с рибофлавином/ультрафиолетом А на биомеханическую прочность склеры в эксперименте (пилотное исследование) // Точка зрения. Восток-Запад. 2016. № 4. С. 5–7. | Bikbov MM, Surkova VK, Zainutdinova GKh, et al. The effect of crosslinking with riboflavin/ultraviolet A on the biomechanical strength of the sclera in an experiment (pilot study). Point of view. East-West. 2016;(4):5–7. (In Russ.) EDN: XEOUXF
  45. Бикбов М.М., Бикбова Г.М, Хабибуллин А.Ф. Применение кросслинкинга роговичного коллагена в лечении буллезной кератопатии // Офтальмохирургия. 2011. № 1. С. 24–27. | Bikbov MM, Bikbova GM, Habiboullin AF. Corneal collagen crosslinking manegement in bullouse keratopathy treatment. Fyodorov Journal of Ophthalmic Surgery. 2011;(1):24–27. EDN: PXRASB
  46. Бикбова Г.М., Бикбов М.М. Терапевтический потенциал кросслинкинга в лечении буллезной кератопатии // Офтальмохирургия. 2009. № 2. С. 30–33. | Bikbov MM, Bikbova GM. Therapeutic potential of crosslinking in the treatment of bullous keratopathy. Fyodorov Journal of Ophthalmic Surgery. 2009;(2):30–33. (In Russ.) EDN: NBPPRD
  47. Saxena R, Dhiman R, Gupta V, et al; Childhood Progressive Myopia Expert Group. Prevention and management of childhood progressive myopia: National consensus guidelines. Indian Journal of Ophthalmology. 2023;71(7):2873–2881. doi: 10.4103/IJO.IJO_387_23 EDN: DNKIJO
  48. Biswas S, El Kareh A, Qureshi M, et al. The influence of the environment and lifestyle on myopia. Journal of Physiological Anthropology. 2024;43(1):7. doi: 10.1186/s40101-024-00354-7 EDN: WSPWSC
  49. Williams KM, Bentham GCG, Young IS, et al. Association between myopia, ultraviolet b radiation exposure, serum vitamin D concentrations, and genetic polymorphisms in vitamin D metabolic pathways in a multicountry European Study. JAMA Ophthalmology. 2017;135(1):47. doi: 10.1001/jamaophthalmol.2016.4752
  50. Гаврилюк А.С., Иванова А.О., Зубарева Л.Н., и др. Оценка эффективности сочетания медикаментозного и хирургического подходов к контролю прогрессирующей миопии у детей. В: Материалы научной конференции офтальмологов с международным участием «Невские чтения». Санкт-Петербург: Санкт-Петербургский государственный педиатрический медицинский университет; 2020. С. 49–50. | Gavrilyuk AS, Ivanova AO, Zubareva LN, et al. Evaluation of the effectiveness of a combination of drug and surgical approaches to the control of progressive myopia in children. In: Proceedings of the scientific conference of ophthalmologists with international participation “Nevskie Readings”. Saint Petersburg: Saint Petersburg State Pediatric Medical University; 2020. P. 49–50. (In Russ.) Available from: https://eyepress.ru/material/otsenka-effektivnosti-sochetaniya
  51. Landreneau JR, Hesemann NP, Cardonell MA. Review on the myopia pandemic: epidemiology, risk factors, and prevention. Mo Med. 2021;118(2):156–163. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8029638/
  52. Толорая Р.Р. Исследование эффективности и безопасности ночных ортокератологических линз в лечении прогрессирующей близорукости: дис. … канд. мед. наук. Москва, 2010. | Toloraya RR. Study of the efficacy and safety of night orthokeratological lenses in the treatment of progressive myopia [dissertation]. Moscow; 2010. (In Russ.) EDN: QESFKB
  53. Chamberlain P, Peixoto-de-Matos SC, Logan NS, et al. A 3-year randomized clinical trial of MiSight lenses for slowing myopia progression. The EYE GLAZ. 2020;22(4):11–28. doi: 10.33791/2222-4408-2020-4-11-28 EDN: ZXQABH
  54. Бездетко П.А., Пархомец Р.А. Анализ роста аксиальной длины глаза у детей с прогрессирующей миопией при использовании ортокератологических линз комбинированного дизайна // Офтальмология. Восточная Европа. 2021. Т. 11, № 4. С. 490–496. | Bezditko PA, Parkhomets RA. Analysis of the growth of the axial length of the eye in children with progressive myopia using combined design orthokeratological lenses. Ophthalmology. Eastern Europe. 2021;11(4):490–496. doi: 10.34883/PI.2021.11.4.031 EDN: IETKTX
  55. Repka MX, Weise KK, Chandler DL, et al; Pediatric Eye Disease Investigator Group. Low-dose 0.01% Atropine eye drops vs placebo for myopia control. JAMA Ophthalmology. 2023;141(8):756. doi: 10.1001/jamaophthalmol.2023.2855 EDN: TGGHDB
  56. Li FF, Yam JC. Low-concentration atropine eye drops for myopia progression. Asia-Pacific Journal of Ophthalmology. 2019;8(5):360–365. doi: 10.1097/APO.0000000000000256
  57. Yam JC, Zhang XJ, Zhang Y, et al. Effect of low-concentration atropine eyedrops vs placebo on myopia incidence in children: The LAMP2 Randomized Clinical Trial. JAMA. 2023;329(6):472–481. doi: 10.1001/jama.2022.24162 EDN: GZUJRW
  58. Chia A, Chua WH, Cheung YB, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2). Ophthalmology. 2012;119(2):347–354. doi: 10.1016/j.ophtha.2011.07.031
  59. Chia A, Lu QS, Tan D. Five-year clinical trial on atropine for the treatment of Myopia 2. Ophthalmology. 2016;123(2):391–399. doi: 10.1016/j.ophtha.2015.07.004
  60. Chia A, Chua WH, Wen L, et al. Atropine for the treatment of childhood myopia: changes after stopping Atropine 0.01%, 0.1% and 0.5%. American Journal of Ophthalmology. 2014;157(2):451–457.e1. doi: 10.1016/j.ajo.2013.09.020
  61. Yuan Y, Zhu C, Liu M, et al. Efficacy of combined orthokeratology and 0.01% atropine for myopia control: the study protocol for a randomized, controlled, double-blind, and multicenter trial. Trials. 2021;22(1):863. doi: 10.1186/s13063-021-05825-1 EDN: YFYMXA
  62. Yoshida T, Takagi Y, Igarashi-Yokoi T, Ohno-Matsui K. Efficacy of lutein supplements on macular pigment optical density in highly myopic individuals: A randomized controlled trial. Medicine. 2023;102(12):e33280. doi: 10.1097/MD.0000000000033280 EDN: ETBMAS
  63. Parekh R, Hammond BR, Chandradhara D. Lutein and Zeaxanthin supplementation improves dynamic visual and cognitive performance in children: a randomized, double-blind, parallel, placebo-controlled study. Advances in Therapy. 2024;41(4):1496–1511. doi: 10.1007/s12325-024-02785-1 EDN: PSXZBH
  64. Mishra A, Zhou B, Rodriguez-Martinez A, et al; NCD Risk Factor Collaboration (NCD-RisC). Diminishing benefits of urban living for children and adolescents’ growth and development. Nature. 2023;615(7954):874–883. doi: 10.1038/s41586-023-05772-8 EDN: ZOMCBR
  65. Németh J, Tapasztó B, Aclimandos WA, et al. Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. European Journal of Ophthalmology. 2021;31(3):853–883. doi: 10.1177/1120672121998960 EDN: UTUUPY
  66. Tian L, Cao K, Ma DL, et al. Investigation of the Efficacy and Safety of 650 nm Low-Level Red Light for Myopia Control in Children: A Randomized Controlled Trial. Ophthalmology and Therapy. 2022;11(6):2259–2270. doi: 10.1007/s40123-022-00585-w EDN: EGKTJR
  67. Иомдина Е.Н., Тарутта Е.П., Маркосян Г.А., и др. Кросслинкинг коллагена склеры — перспективное направление развития склероукрепляющего лечения прогрессирующей миопии // Российский офтальмологический журнал. 2024. Т. 17, № 2. С. 128–134. | Iomdina EN, Tarutta EP, Markosyan GA, et al. Scleral collagen crosslinking as a promising direction of sclera-strengthening treatment of progressive myopia. Russian Ophthalmological Journal. 2024;17(2):128–134. doi: 10.21516/2072-0076-2024-17-2-128-134 EDN: FHNQAX

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).