Couette flow of hot viscous gas
- Authors: Khorin A.N.1, Konyukhova A.A.1
-
Affiliations:
- Moscow Institute of Physics and Technology (National Research University)
- Issue: Vol 24, No 2 (2020)
- Pages: 365-378
- Section: Articles
- URL: https://ogarev-online.ru/1991-8615/article/view/41994
- DOI: https://doi.org/10.14498/vsgtu1751
- ID: 41994
Cite item
Full Text
Abstract
A new exact solution is found for the equations of motion of a viscous gas for a stationary shear flow of hot (800–1500 K) gas between two parallel plates moving at different speeds (an analog of the incompressible Couette flow). One of the plates was considered thermally insulated. For the dependence of the coefficient of viscosity on temperature, the Sutherland formula is adopted. Unlike other known exact solutions, instead of a linear association between the viscosity and thermal conductivity coefficients, a more accurate formula was used to calculate the thermal conductivity coefficient, having the same accuracy in the temperature range under consideration as the Sutherland formula (2 %). Using the obtained exact solution, the qualitative effect of compressibility on the friction stress and the temperature, and velocity profiles were investigated. It is shown that the compressibility of the gas leads to an increase in the friction stress, if one of the plates is thermally insulated. The new exact solution was compared with the known exact solution (Golubkin, V.N. & Sizykh, G.B., 2018) obtained using the Sutherland formula for the viscosity coefficient and the Reynolds analogy for the thermal conductivity coefficient. It was found that both solutions lead to the same conclusions about the qualitative effect of compressibility on the friction stress and on the temperature and velocity profiles. However, the increase in friction stress caused by compressibility of the gas turned out to be underestimated twice when using the Reynolds analogy. This shows that the assumption of a linear relationship between the coefficients of viscosity and thermal conductivity can lead to noticeable quantitative errors.
Full Text
##article.viewOnOriginalSite##About the authors
Aleksandr Nickolaevich Khorin
Moscow Institute of Physics and Technology (National Research University)without scientific degree, no status
Anastasia Anatolevna Konyukhova
Moscow Institute of Physics and Technology (National Research University)without scientific degree, no status
References
- Couette M., "Etudes sur le frottement des liquides", Ann. Chim. Phys., Ser. 6, 21 (1890), 433-510
- Schlichting H., Gersten K., Grenzschicht-Theorie, Springer-Verlag, Berlin, 2006
- Лойцянский Л. Г., Механика жидкости и газа, Гостехиздат, М.-Л., 1950
- White F., Viscous Fluid Flow, Mcgraw-Hill Series in Mechanical Engineering Book Series, McGraw Hill, New York, 2006
- Кочин Н. Е., Кибель И. А., Розе Н. В., Теоретическая гидромеханика. Ч. II., Физматлит, М., 1963
- Гродзовский Г. Л., "Течение вязкого газа между двумя движущимися параллельными стенками и между двумя вращающимися цилиндрами", ПММ, 19:1 (1955), 99-102
- Жмулин Е. М., "Течение вязкого газа между двумя движущимися параллельными пластинами", Уч. записки ЦАГИ, 2:4 (1971), 31-37
- Rogers G. F. C., Mayhew Y. R., Thermodynamic and Transport Properties of Fluids: S.I. Units, Blackwell, Malden, USA, 1995
- Голубкин В. Н., Сизых Г. Б., "О сжимаемом течении Куэтта", Уч. записки ЦАГИ, 49:1 (2018), 27-38
- Брутян М. А., Крапивский П. Л., "Точные решения стационарных уравнений Навье-Стокса вязкого теплопроводного газа для плоской струи из линейного источника", ПММ, 82:5 (2018), 644-656
- Брутян М. А., Ибрагимов У. Г., "Автомодельные и неавтомодельные течения вязкого газа, истекающего из вершины конуса", Труды МФТИ, 10:4 (2018), 113-121
- Bosnyakov S., Mikhaylov S. V., Morozov A. N., et al., "Implementation of high-order discontinuous Galerkin method for solution of practical tasks in external aerodynamics and aeroacoustics", N. Kroll, C. Hirsch, F. Bassi, C. Johnston, K. Hillewaert (eds.), IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 128, Springer, Cham, 2015, 337-379
- Bosnyakov S., Mikhaylov S. V., Podaruev V. Yu., et al., "Application of high-order discontinuous Galerkin method to LES/DES test cases using computers with high number of cores", 23rd AIAA Computational Fluid Dynamics Conference (AIAA Aviation 2017, USA, Denver, Colorado, 5-9 June 2017), 2017, 2017-3943
- Егоров И. В., Новиков А. В., "Прямое численное моделирование ламинарно-турбулентного обтекания плоской пластины при гиперзвуковых скоростях потока", Ж. вычисл. матем. и матем. физ., 56:6 (2016), 1064-1081
- Егоров И. В., Пальчековская Н. В., Шведченко В. В., "Влияние пространственных возмущений сверхзвукового потока на тепловой поток к поверхности затупленных тел", ТВТ, 53:5 (2015), 713-726
- Голубкин В. Н., Сизых Г. Б., "Течение вязкого газа между вертикальными стенками", ПММ, 82:5 (2018), 657-667
Supplementary files

