Modeling of Stefan-type problems under conditions of thermal decomposition of binders in thermal protection composite materials
- Authors: Formalev V.F.1
-
Affiliations:
- Moscow Aviation Institute (National Research University)
- Issue: Vol 29, No 4 (2025)
- Pages: 726-739
- Section: Mathematical Modeling, Numerical Methods and Software Complexes
- URL: https://ogarev-online.ru/1991-8615/article/view/376399
- DOI: https://doi.org/10.14498/vsgtu2253
- EDN: https://elibrary.ru/SJFPUY
- ID: 376399
Cite item
Full Text
Abstract
This study addresses the complex problem of heat and mass transfer modeling in thermal protection composite materials subjected to heating of high intensity. The study examines the process of binder thermal decomposition, which results in the formation of a gaseous phase and a porous coke residue, followed by gas filtration through this residue and its injection into the gas-dynamic boundary layer. A Stefan-type problem with two moving boundaries defining the decomposition zone is formulated and solved analytically. The velocity of this zone is determined from the heat flux balance. To describe gas generation within the decomposition zone, an approach based on a modified Arrhenius law is proposed. Its parameters are identified using the composite material's reference data (decomposition onset and completion temperatures and densities), thereby eliminating the need for complex, hard-to-formulate full chemical kinetics.
Analytical solutions for temperature fields in all three regions are obtained: the porous coke residue, the active decomposition zone, and the virgin material. Distributions of the composite material density and the gas phase density in the decomposition zone, as well as filtration flow characteristics, are determined. Analysis of the results demonstrates that the temperature distribution in the decomposition zone is essentially nonlinear, while the density distributions are close to linear. The results of this work enable the assessment of mass-dimensional characteristics of thermal protection systems for high-speed aircraft structural elements at the design stage.
Full Text
##article.viewOnOriginalSite##About the authors
Vladimir F. Formalev
Moscow Aviation Institute (National Research University)
Author for correspondence.
Email: formalev38@yandex.ru
ORCID iD: 0000-0003-2135-0926
SPIN-code: 4502-3688
Scopus Author ID: 6602473764
ResearcherId: T-1483-2018
https://www.mathnet.ru/rus/person30958
Dr. Phys. & Math. Sci., Professor; Professor; Dept. of Computational Mathematics and Programming
Russian Federation, 125993, Moscow, Volokolamskoe Shosse, 4References
- Formalev V. F., Kuznetsova E. L. Teplomassoperenos v anizotropnykh telakh pri aerogazodinamicheskom nagreve [Heat and Mass Transfer in Anisotropic Bodies under Aerogasdynamic Heating]. Moscow, MAI-Print, 2010, 308 pp. (In Russian). EDN: QJYKVJ.
- Kuznetsova E. L. Matematicheskoe modelirovanie teplomassoperenosa v kompozitsionnykh materialakh pri vysokotemperaturnom nagreve v elementakh raketno-kosmicheskoi tekhniki [Mathematical Modeling of Heat and Mass Transfer in Composite Materials under High-Temperature Heating in Elements of Rocket and Space Technology], ed. V. F. Formalev. Moscow, Moscow Aviation Inst., 2010, 160 pp. (In Russian). EDN: QNXKGB.
- Formalev V. F., Kolesnik S. A. Matematicheskoe modelirovanie sopriazhennogo teploperenosa mezhdu vyazkimi gazodinamicheskimi techeniyami i anizotropnymi telami [Mathematical Modeling of Conjugate Heat Transfer Between Viscous Gasdynamic Flows and Anisotropic Bodies]. Moscow, Lenand, 2022, 348 pp. (In Russian)
- Kartashov E. M. Analytical methods for solving boundary value problems in domains with moving boundaries, Izv. RAN. Energetika, 1999, no. 5, pp. 3–34 (In Russian).
- Lykov A. V. Teplomassoperenos [Heat and Mass Transfer]. Moscow, Energiya, 1978, 480 pp. (In Russian)
- Kudinov I. V., Eremin A. V., Kudinov V. A., et al. Mathematical model of damped elastic rod oscillations with dual-phase-lag, Int. J. Solids Struct., 2020, vol. 200–201, pp. 231–241. EDN: LVYXJK. DOI: https://doi.org/10.1016/j.ijsolstr.2020.05.018.
- Grassie N., Scott G. Polymer Degradation and Stabilisation. Cambridge, Cambridge University Press, 1988, 232 pp.
- Bryk M. T. Destruktsiya napolnennykh polimerov [Destruction of Filled Polymers], vol. 1. Moscow, Khimiya, 1989, 190 pp. (In Russian)
- Madorsky S. Termicheskoe razlozhenie organicheskikh polimerov [Thermal Degradation of Organic Polymers]. Moscow, Mir, 1967, 330 pp. (In Russian)
- Kartashov E. M., Kudinov V. A. Analiticheskie metody teorii teploprovodnosti i ee prilozhenii [Analytical Methods of Heat Conduction Theory and Its Applications]. Moscow, Lenand, 2018, 1080 pp. (In Russian)
- Chaurasiya V., Singh J. An analytical study of coupled heat and mass transfer freeze-drying with convection in a porous half body: A moving boundary problem, J. Energy Storage, 2022, vol. 55, 105394. EDN: CVPVQZ. DOI: https://doi.org/10.1016/j.est.2022.105394.
- Feng D., Nan J., Feng Y., et al. Numerical investigation on improving the heat storage and transfer performance of ceramic/D-mannitol composite phase change materials by bionic graded pores and nanoparticle additives, Int. J. Heat Mass Transf., 2021, vol. 179, 121748. EDN: SRKMMS. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121748.
- Kuznetsova E. L. A method for the determination of the mass density of heat protective composite mateirals in the domain of thermal destruction of binding agents under high temperatures, Mekh. Kompoz. Mater. Konstr., 2023, vol. 29, no. 3, pp. 382–389 (In Russian). EDN: NNTEGI. DOI: https://doi.org/10.33113/mkmk.ras.2023.29.03.05.
- Formalev V. F., Kolesnik S. A., Garibyan B. A. Heat and mass transfer in composites with thermal waves due to phase transitions, Russ. Eng. Res., 2024, vol. 44, no. 5, pp. 701–704. EDN: LTQPXV. DOI: https://doi.org/10.3103/s1068798x24700898.
- Lushpa A. N. Osnovy khimicheskoi termodinamiki i kinetiki khimicheskikh protsessov [Fundamentals of Chemical Thermodynamics and Kinetics of Chemical Processes]. Moscow, Mashinostroenie, 1981, 240 pp. (In Russian)
- Tikhonov A. N., Samarskii A. A. Uravneniya matematicheskoi fiziki [Equations of Mathematical Physics]. Moscow, Nauka, 1981, 512 pp. (In Russian)
- Carslaw H. S., Jaeger J. C. Conduction of Heat in Solids. Oxford, Clarendon Press, 1959, x+510 pp.
Supplementary files





