On the reflection of a plane shock wave from a rigid wall in a detonating gas

Cover Page

Cite item

Full Text

Abstract

This study presents a physical-mathematical model, computational algorithms, and results of calculations for ignition and detonation in a combustible mixture behind a reflected shock wave. The problem is solved numerically using the Godunov method for two-dimensional unsteady gas dynamics equations coupled with chemical kinetics. Calculations of detonation wave initiation and propagation in a methane-air mixture are performed using a simplified kinetic mechanism for methane combustion. Two propagation regimes are identified: a steady regime with constant velocity and an unsteady oscillatory mode. It is demonstrated that, far from the wall, the average detonation velocity and the key flow parameters behind the wave front can be accurately determined from the solution of a self-similar problem of shock wave reflection from a wall, under the assumptions of frozen flow ahead of the wave and thermodynamic equilibrium behind it.

About the authors

Vladimir Yu. Gidaspov

Moscow Aviation Institute (National Research University)

Author for correspondence.
Email: gidaspov@mai.ru
ORCID iD: 0000-0002-5119-4488
SPIN-code: 9954-7270
Scopus Author ID: 6506396733
ResearcherId: B-4572-2019
https://www.mathnet.ru/rus/person26168

Dr. Phys. & Math. Sci., Senior Researcher; Professor; Dept. of Computational Mathematics and Programming

Russian Federation, 125993, Moscow, Volokolamskoe Shosse, 4

Natalya S. Severina

Moscow Aviation Institute (National Research University)

Email: severinans@mai.ru
ORCID iD: 0000-0001-5951-4629
SPIN-code: 5512-8170
Scopus Author ID: 56638598100
ResearcherId: T-4276-2018
https://www.mathnet.ru/rus/person51389

Cand. Phys. & Math. Sci., Associate Professor; Associate Professor; Dept. of Computational Mathematics and Programming

Russian Federation, 125993, Moscow, Volokolamskoe Shosse, 4

References

  1. Zel’dovich Ya. B. Teoriya goreniya i detonatsii gazov [Theory of Combustion and Detonation of Gases]. Moscow, Acad. Sci. USSR, 1944, 72 pp. (In Russian)
  2. Soloukhin R. I. Udarnye volny i detonatsiya v gazakh [Shock Waves and Detonation in Gases]. Moscow, Fizmatlit, 1963, 175 pp. (In Russian)
  3. Stanukovich K. P. Neustanovivshiesya dvizheniya sploshnoi sredy [Unsteady Motions of Continuous Medium]. Moscow, Nauka, 1971, 856 pp. (In Russian)
  4. Nettleton M. A. Gaseous Detonations. Their nature, effects and control. Dordrecht, Springer, 1987, xiv+256 pp. DOI: https://doi.org/10.1007/978-94-009-3149-7.
  5. Mitrofanov V. V. Detonatsiya gomogennykh i geterogennykh sistem [Detonation of Homogeneous and Heterogeneous Systems]. Novosibirsk, Inst. Hydrodyn. Sib. Branch Russ. Acad. Sci., 2003, 200 pp. (In Russian). EDN: QKASZF.
  6. Andreev S. G., Babkin A. V., Baum F. A., et al. Fizika vzryva [Physics of Explosion], vol. 1, ed. L. P. Orlenko. Moscow, Fizmatlit, 2004, 832 pp. (In Russian). EDN: VYIRVX.
  7. Levin V. A., Manuilovich I. S., Markov V. V. Initiation and propagation of multidimensional detonation waves, Combust. Explos. Shock Waves, 2015, vol. 51, no. 1, pp. 36–44. EDN: UFLANF. DOI: https://doi.org/10.1134/S0010508215010037.
  8. Vasil’ev A. A. Detonation as combustion in a supersonic flow of a combustible mixture, Combust. Explos. Shock Waves, 2022, vol. 58, no. 6, pp. 696–708. EDN: ZWQMAU. DOI: https://doi.org/10.1134/S0010508222060077.
  9. Gidaspov V. Yu., Kononov D. S., Severina N. S. Simulation of the ignition and detonation of methane-air mixtures behind a reflected shock wave, High Temp., 2020, vol. 58, no. 6, pp. 846–851. EDN: SITRTJ. DOI: https://doi.org/10.1134/S0018151X20060103.
  10. Gurvich L. V., Veits I. V., Medvedev V. A., et al. Termodinamicheskie svoistva individualnykh veshchestv [Thermodynamic Properties of Individual Substances], Handbook in 4 vols. Moscow, Nauka, 1982 (In Russian).
  11. Gidaspov V. Yu., Severina N. S. Nekotorye zadachi fizicheskoi gazovoi dinamiki [Some Problems of Physical Gas Dynamics]. Moscow, Moscow Aviation Inst., 2016, 196 pp. (In Russian). EDN: YSPXSH.
  12. Gidaspov V. Yu., Ivanov I. E., Kryukov I. A. Numerical simulation of detonation initiation in a focusing channel, Mat. Model., 1992, vol. 4, no. 12, pp. 85–88 (In Russian).
  13. Gidaspov V. Yu., Ivanov I. E., Kryukov I. A., et al. Investigation of buster waves moves in cumulating cavity, Mat. Model., 2004, vol. 16, no. 6, pp. 118–122 (In Russian).
  14. Bam-Zelikovich G. M. Decay of an arbitrary discontinuity in a combustible mixture, In: Theoretical Hydromechanics, Collect. Art. No. 4. Moscow, Oborongiz, 1949, pp. 112–141 (In Russian).
  15. Basevich V. Ya., Frolov S. M. Global kinetic mechanisms developed for modeling multistage self-ignition of hydrocarbons in reacting flows, Khim. Fiz., 2006, vol. 25, no. 6, pp. 54–62 (In Russian). EDN: HTUKWV.
  16. Gidaspov V. Yu., Severina N. S. Numerical simulation of the detonation of a propane-air mixture, taking irreversible chemical reactions into account, High Temp., 2017, vol. 55, no. 5, pp. 777–781. EDN: XNXJNA. DOI: https://doi.org/10.1134/S0018151X17050078.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Flow structure upon shock wave reflection from a wall in a detonating gas mixture. Notation: $O$ — incident shock impingement on the wall; $B$ — ignition event; $C$ — combustion wave and reflected shock interaction point. Waves: ISW—incident shock wave; RSW—reflected shock wave; CW—combustion wave; DW—detonation wave. Flow regions: 0—ahead of ISW; 1—behind ISW; 2—behind RSW; 3—behind DW

Download (29KB)
3. Figure 2. Formation of a detonation wave upon shock wave reflection from a wall: a) overdriven detonation wave (ODW) regime; b) Chapman—Jouguet detonation wave (CJDW) regime with an adjacent expansion fan (EF). Flow regions: 0—ahead of ISW; 1—behind ISW; 3—immediately behind the detonation wave; 4—near-wall region (for case b)

Download (44KB)
4. Figure 3. Color scales for contour visualization: a) pressure, Pa; b) temperature, K (online in color)

Download (136KB)
5. Figure 4. Temperature contours at different time instants: a, b — $t = 1.411$ ms; c, d — $t = 2.538$ ms. Incident shock wave parameters: $M_{\text{ISW}} = 3.2$; initial conditions: $p = 10000$ Pa, $T = 300$ K (online in color)

Download (1MB)
6. Figure 5. Pressure contours at different time instants: a, b — $t = 1.411$ ms; c, d — $t = 2.538$ ms. Incident shock wave parameters: $M_{\text{ISW}} = 3.2$; initial conditions: $p = 10000$ Pa, $T = 300$ K (online in color)

Download (1MB)
7. Figure 6. Temperature vs. longitudinal coordinate: 1—$t = 1.411$ ms; 2—$t = 2.538$ ms; 3—$t = 3.353$ ms; 4—temperature behind the overdriven detonation wave; 5—temperature behind the Chapman—Jouguet detonation wave

Download (73KB)
8. Figure 7. Pressure vs. longitudinal coordinate: 1—$t = 1.411$ ms; 2—$t = 2.538$ ms; 3—$t = 3.353$ ms; 4—pressure behind the overdriven detonation wave; 5—pressure behind the Chapman—Jouguet detonation wave

Download (61KB)
9. Figure 8. Detonation wave velocity vs. incident shock wave Mach number $M_{\text{ISW}}$: markers—average velocity values calculated far from the wall; 1—equilibrium overdriven detonation wave velocity; 2—Chapman—Jouguet detonation wave velocity

Download (57KB)

Copyright (c) 2025 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).