On a fine localization of the Mathieu azimuthal numbers by Cassini ovals


Cite item

Full Text

Abstract

The study is devoted to numerical and analytical problems concerning generating periodic and antiperiodic solutions of the angular (circumferential) Mathieu equation obtained for the circumferential harmonics of an elliptic cylinder. The Mathieu eigenvalues localization problem and computations of elliptic azimuthal numbers are discussed. First, the Sturm–Liouville eigenvalue problem for the angular Mathieu equation is reformulated as an algebraic eigenvalue problem for an infinite linear self-adjoint pentadiagonal matrix operator acting in the complex bi-infinite sequence space $l_2$. The matrix operator is then represented as a sum of a diagonal matrix and an infinite symmetric doubly stochastic matrix, which is interpreted as a finite perturbation imposed on the diagonal matrix. Effective algorithms for computations of the Mathieu eigenvalues and associated circumferential harmonics are discussed. Azimuthal numbers notion is extended to the case of elastic and thermoelastic waves propagating in a long elliptic waveguide. Estimations of upper and low bounds and thus localizations of the angular Mathieu eigenvalues and elliptic azimuthal numbers are given. Those are obtained by algebraic methods employing the Gerschgorin theorems and Cassini ovals technique. The latter provides more accurate solution of the Mathieu eigenvalues localization problem.

About the authors

Yuri Nikolaevich Radayev

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: y.radayev@gmail.com, radayev@ipmnet.ru
Doctor of physico-mathematical sciences, Professor

Margarita Vladimirovna Taranova

N. G. Chernyshevsky Saratov State University, Faculty of Mathematics and Mechanics

Email: taranova.mv@gmail.com

References

  1. E. Mathieu, "Memoire sur le mouvement vibratoire d'une membrane de forme elliptique", J. Math. Pures Appl., 13 (1868), 137-203
  2. M. J. O. Strutt, Lame, Mathieu and Related Functions in Physics and Technology, Springer, Berlin, 1932
  3. N. W. McLachlan, Theory and Application of Mathieu Functions, Oxford Press, London, 1951, xii+401 pp.
  4. В. А. Ковалев, Ю. Н. Радаев, "Волновые задачи теории поля и термомеханика", Вторая международная конференция «Математическая физика и ее приложения», Материалы Межд. конф., ред. чл.-корр. РАН И. В. Волович и д.ф.-м.н., проф. Ю. Н. Радаев, Книга, Самара, 2010, 165-166
  5. В. А. Ковалев, Ю. Н. Радаев, Волновые задачи теории поля и термомеханика, Сарат. ун-т, Саратов, 2010, 328 с.
  6. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965, xviii+662 pp.
  7. R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge etc., 1985, xiii+561 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).