On problem of nonexistence of dissipative estimate for discrete kinetic equations


Cite item

Full Text

Abstract

The existence of a global solution to the discrete kinetic equations in Sobolev spaces is proved, its decomposition by summability is obtained, the influence of its oscillations generated by the interaction operator is explored. The existence of a submanifold ${\mathcal M}_{diss}$ of initial data $(u^0, v^0, w^0)$ for which the dissipative solution exists is proved. It’s shown that the interaction operator generates the solitons (progressive waves) as the nondissipative part of the solution when the initial data $(u^0, v^0, w^0)$ deviate from the submanifold ${\mathcal M}_{diss}$. The amplitude of solitons is proportional to the distance from $(u^0, v^0, w^0)$ to the submanifold ${\mathcal M}_{diss}$. It follows that the solution can stabilize as $t\to\infty$ only on compact sets of spatial variables.

About the authors

Evgenii Vladimirovich Radkevich

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Email: evrad07@gmail.com
Doctor of physico-mathematical sciences, Professor

References

  1. Е. В. Радкевич, "О существовании глобальных решений задачи Коши для дискретных кинетических уравнений (непериодический случай)", Пробл. мат. анал., 62 (2012)
  2. T. E. Broadwell, "Study of rarified shear flow by the discrete velocity method", J. Fluid Mech., 19:3 (1964), 401-414
  3. С. К. Годунов, У. М. Султангазин, "О дискретных моделях кинетического уравнения Больцмана", УМН, 26:3(159) (1971), 3-51
  4. L. Boltzmann, "On the Maxwell method to the reduction of hydrodynamic equations from the kinetic gas theory", Rep. Brit. Assoc. , London, 1894, 579
  5. В. В. Веденяпин, Кинетические уравнения Больцмана и Власова, Физматлит, М., 2001, 112 с.
  6. S. Chapman, T. G. Cowling, The mathematical theory of non-uniform gases. An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, Cambridge University Press, Cambridge, 1970, xxiv+423 pp.
  7. R. Peierls, "Zur kinetischen Theorie der Wärmeleitung in Kristallen", Ann. Phys., 395:8 (1929), 1055–1101

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).