Задача Дирихле для уравнения смешанного типа с двумя линиями вырождения в полуполосе


Цитировать

Полный текст

Аннотация

Изучена первая граничная задача для уравнения смешанного типа с двумя линиями вырождения в полуполосе в классе регулярных и ограниченных в бесконечности решений. Методами спектрального анализа установлен критерий единственности поставленной задачи. Решение задачи построено в виде ряда по собственным функциям соответствующей одномерной задачи на собственные значения. При обосновании равномерной сходимости построенного ряда возникла проблема малых знаменателей, в связи с чем в работе доказана оценка об отделенности от нуля малого знаменателя с соответствующей асимптотикой. Эта оценка при некоторых достаточных условиях на граничную функцию позволила доказать сходимость построенного ряда в классе регулярных решений данного уравнения. В отличие от других работ схожей тематики, критерий единственности и существование решения поставленной задачи удалось доказать при всех положительных значениях входящих в уравнение параметров, не обязательно равных. Важным следствием полученного результата является такой факт, что построенное решение всюду в рассматриваемой области является решением уравнения, поэтому линия изменения типа уравнения как особая устраняется.

Об авторах

Винер Зуфарович Вагапов

Стерлитамакский филиал Башкирского государственного университета

кандидат физико-математических наук, доцент

Список литературы

  1. Сабитов К. Б., Шарафутдинова Г. Г., "Задача Трикоми для уравнения смешанного типа с двумя перпендикулярными линиями вырождения", Дифференц. уравнения, 39:6 (2003), 788-800
  2. Сабитов К. Б., Карамова А. А., "Решение одной газодинамической задачи для уравнения смешанного типа с негладкой линией вырождения", Дифференц. уравнения, 38:1 (2002), 111-116
  3. Сабитов К. Б., Биккулова Г. Г., Гималтдинова А. А., К теории уравнений смешанного типа с двумя линиями изменения типа, Гилем, Уфа, 2006, 149 с.
  4. Нахушев А. М., "Критерий единственности задачи Дирихле для уравнения смешанного типа в цилиндрической области", Дифференц. уравнения, 6:1 (1970), 190-191
  5. Хачев М. М., Первая краевая задача для линейных уравнений смешанного типа, Эльбрус, Нальчик, 1998, 168 с.
  6. Сабитов К. Б., "Задача Дирихле для уравнений смешанного типа в прямоугольной области", Докл. РАН, 413:1 (2007), 23-26
  7. Сабитов К. Б., "Задача Дирихле для уравнения смешанного типа в полуполосе", Дифференц. уравнения, 43:10 (2007), 1417-1422
  8. Владимиров В. С., Уравнения математической физики, Наука, М., 1988, 512 с.
  9. Сабитов К. Б., Сидоренко О. Г., "Задача с условиями периодичности для вырождающегося уравнения смешанного типа", Дифференц. уравнения, 46:1 (2010), 105-113
  10. Erdelyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II., Bateman Manuscript Project, McGraw-Hill Book Co., New York, Toronto, London, 1953, xvii+396 pp.
  11. Риекстыньш Э. Я., Асимптотические разложения интегралов, т. 1, Зинатне, Рига, 1974, 392 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).