On a differential constraint in the continuum theory of growing solids

Cover Page

Cite item

Abstract

The present paper is devoted to the problem of boundary conditions formulation for asymmetric problems in the mechanics of growing solids (MGS). The boundary conditions on the propagating growing surface (PGS) is the fundamental problem of this branch of mechanics. Results from the algebra of rational invariants are used for deriving constitutive equations on PGS. Geometrically and mechanically consistent differential constraints are obtained on PGS. Those are valid for a wide range of materials and metamaterials. A number of constitutive equations on PGS of different complexity levels are proposed. The boundary conditions simultaneously can be treated as differential constraints within the frameworks of variational formulations. The differential constraints imply an experimental identification of constitutive functions. For this reason, the obtained results furnish a general ground in applied problems of the MGS.

About the authors

Eugenii Valeryevich Murashkin

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: murashkin@dvo.ru, murashkin@ipmnet.ru, evmurashkin@gmail.com
Candidate of physico-mathematical sciences, no status

Yuri Nikolaevich Radayev

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: y.radayev@gmail.com, radayev@ipmnet.ru
Doctor of physico-mathematical sciences, Professor

References

  1. Berman B., "3-D printing: The new industrial revolution", Business Horizons, 55:2 (2012), 155-162
  2. Mankovich N. J., Cheeseman A. M., Stoker N. G., "The display of three-dimensional anatomy with stereolithographic models", J. Digit. Imaging, 3:3 (1990), 200-203
  3. Stampfl J., Baudis S., Heller C., et al., "Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography", J. Micromech. Microeng., 18:12 (2008), 125014
  4. Murr L. E., Gaytan S. M., Ceylan A., et al., "Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting", Acta Materialia, 58:5 (2010), 1887-1894
  5. Bauer W., Knitter R., Emde A., et al., "Replication techniques for ceramic microcomponents with high aspect ratios", Microsystem Technologies, 9:1-2 (2002), 81-86
  6. Rengier F., Mehndiratta A., von Tengg-Kobligk H., et al., "3D printing based on imaging data: review of medical applications", Int. J. Comput. Assist. Radiol. Surg., 5:4 (2010), 335-341
  7. Lipson H., Kurman M., Fabricated: The new world of 3D printing, John Wiley & Sons, Indiana, 2013
  8. Ventola C. L., "Medical applications for 3D printing: current and projected uses", Pharmacy and Therapeutics, 39:10 (2014), 704-711
  9. Ozel T., Bourret G. R., Mirkin C. A., "Coaxial lithography", Nature Nanotechnology, 10:4 (2015), 319-324
  10. Panda B., Paul S. C., Hui L. J., et al., "Additive manufacturing of geopolymer for sustainable built environment", Journal of Cleaner Production, 167 (2017), 281-288
  11. Stadnik N. E., Dats E. P., "Continuum mathematical modelling of pathological growth of blood vessels", Journal of Physics: Conference Series, 991 (2018), 012075
  12. Stadnik N. E., Murashkin E. V., Dats E. P., "Residual stresses in blood vessel wall during atherosclerosis", AIP Conference Proceedings, 2116:1 (2019), 380013
  13. Southwell R. V., An introduction to the theory of elasticity. For engineers and physicists, Oxford Engineering Science Series, Oxford Univ. Press, London, 1936
  14. Rashba E. I., "Stresses computation in massive construction under their own weight taking into account the construction sequence", Proc. Inst. Struct. Mech. Acad. Sci. Ukrainian SSR, 1953, no. 18, 23-27 (In Russian)
  15. Charlab V. D., "Linear creep theory of the build-up body. Mechanics of rod systems and solid mediums", The Proceedings of the Leningrad Construction Institute, v. 49, Leningrad Construction Institute, Leningrad, 1966, 93-119 (In Russian)
  16. Arutyunyan N. Kh., Naumov V. E., Radayev Yu. N., "Dynamic expansion of an elastic layer. Part 1. Motion of a flow of precipitated particles at a variable rate", Izv. Akad. Nauk. Mekh. Tverd. Tela, 1992, no. 5, 6-24 (In Russian)
  17. Arutyunyan N. Kh., Naumov V. E., Radayev Yu. N., "Dynamical expansion of an elastic layer. Part 2. The case of drop of accreted particles at a constant rate", Izv. Akad. Nauk. Mekh. Tverd. Tela, 1992, no. 6, 99-112 (In Russian)
  18. Naumov V. E., Radayev Yu. N., Thermomechanical model of an growing solids: Variational formulation, Preprint no. 527, IPMech RAS, Moscow, 1993, 39 pp. (In Russian)
  19. Dmitrieva A. M., Naumov V. E., Radayev Yu. N., Growth of thermoelastic spherical layer: Application of the variational approach, Preprint no. 528, IPMech RAS, Moscow, 1993, 64 pp. (In Russian)
  20. Arutyunyan N. Kh., Naumov V. E., "The boundary value problem of the theory of viscoelastic plasticity of a growing body subject to aging", J. Appl. Math. Mech., 48:1 (1984), 1-10
  21. Trincher V. K., "On the formulation of the problem of stresses calculation in the gravitational state of a growing solid", Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1984, no. 2, 119-124 (In Russian)
  22. Bykovtsev G. I., Izbrannye problemnye voprosy mekhaniki deformiruemykh sred [Selected Problems from Solid Mechanics. Collection of articles], Dal'nauka, Vladivostok, 2002 (In Russian)
  23. Kovalev V. A., Radayev Yu. N., "Mathematical models and contemporary theories of physical fields", Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 9:4(2) (2009), 41-94 (In Russian)
  24. Kovalev V. A., Radayev Yu. N., Volnovye zadachi teorii polia i termomekhanika [Wave Problems of Field Theory and Thermomechanics], Saratov State Univ., Saratov, 2010 (In Russian)
  25. Kovalev V. A., Radayev Yu. N., "On precisely conserved quantities of coupled micropolar thermoelastic field", Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 12:4 (2012), 71-79 (In Russian)
  26. Kovalev V. A., Radayev Yu. N., "Covariant field equations and $d$-tensors of hyperbolic thermoelastic continuum with fine microstructure", Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:2(1) (2013), 60-68 (In Russian)
  27. Gurevich G. B., Foundations of the theory of algebraic invariants, P. Noordhoff, Groningen, 1964
  28. Radayev Yu. N., Prostranstvennaia zadacha matematicheskoi teorii plastichnosti [Three-dimensional Problem of the Mathematical Theory of Plasticity], Samara State Univ., Samara, 2007 (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).