Higgs boson production at the lhc in the framework of Regge limit of quantum chromodynamics


Cite item

Abstract

In the framework of the L. N. Lipatov Reggeized Partons Theory we consider production of scalar Higgs boson H of the Standard Model and pseudoscalar Higgs boson A of the Minimal Supersymmetric Standard Model in the Reggeized gluon fusion at the energy range of the Large Hadron Collider. Working in the leading order approximation in the strong coupling constant $\alpha_s$ we take into account contributions from $t$and $b$-quark in the loop integrals. We have calculated transverse momentum boson spectra and total cross sections as a function of boson mass. The obtained results agree with predictions which have been obtained earlier in the collinear Parton Model with the next to leading order in $\alpha_s$ corrections and all-order resummation of large logarithmical corrections.

About the authors

Maxim A Nefedov

Samara State University

Email: nefedovma@gmail.com
Postgraduate Student, Dept. of General and Theoretical Physics 1, Academician Pavlov st., Samara, 443011, Russia

Vladimir A Saleev

Samara State University

Email: saleev@samsu.ru
(Dr. Sci. (Phys. & Math.)), Professor, Dept. of Mathematical Modeling in Mechanics. 1, Academician Pavlov st., Samara, 443011, Russia

References

  1. ATLAS Collaboration, Aad G., et. al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC // Phys. Lett. B., 2012. Vol. 716, no. 1. Pp. 1–29, arXiv: 1207.7214 [hep-ex].
  2. CMS Collaboration, Chatrchyan S., et. al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC // Phys. Lett. B., 2012. Vol. 716, no. 1. Pp. 30–61, arXiv: 1207.7235 [hep-ex].
  3. Baglio J., Djouadi A., Godbole R. M. The apparent excess in the Higgs to di-photon rate at the LHC: New Physics or QCD uncertainties? // Phys. Lett. B, 2012. Vol. 716, no. 1. Pp. 203–207, arXiv: 1207.1451 [hep-ph].
  4. ATLAS Collaboration, Aad G., et. al. Search for neutral MSSM Higgs bosons decaying to $tau^+ tau^-$ pairs in proton-proton collisions at $sqrt s = 7$ TeV with the ATLAS detector // Phys. Lett. B, 2011. Vol. 705, no. 3. Pp. 174–192, arXiv: 1107.5003 [hep-ex].
  5. Spira M., Djouadi A., Graudenz D., Zerwas P. M. Higgs boson production at the LHC // Nucl. Phys. B., 1995. Vol. 453, no. 1–2. Pp. 17–82, arXiv: hep-ph/9504378.
  6. Anastasiou C., Melnikov K. Higgs boson production at hadron colliders in NNLO QCD // Nucl. Phys. B., 2002. no. 1–2. Pp. 220–256, arXiv: hep-ph/0207004.
  7. LHC Higgs Cross Section Working Group, Dittmaier S., et. al., Handbook of LHC Higgs Cross Sections: 2. Differential Distributions: to be submitted to CERN Report, 2012. 275 pp., arXiv: hep-ph/1201.3084.
  8. Dokshitzer Yu. L., Dyakonov D. I., Troyan S. I. Hard processes in quantum chromodynamics // Phys. Rep., 1980. Vol. 58, no. 5. Pp. 269–395.
  9. Bozzi G., Catani S., de Florian D., Grazzini M. The $q_T$ spectrum of the Higgs boson at the LHC in QCD perturbation theory // Phys. Lett. B, 2003. Vol. 564, no. 1–2. Pp. 65–72, arXiv: hep-ph/0302104.
  10. Frixione S., Nason P., Oleari C. Matching NLO QCD computations with parton shower simulations: the POWHEG method // JHEP, 2007. Vol. 2007, no. 11, 070.
  11. Lipatov L. N. Gauge invariant effective action for high energy processes in QCD // Nucl. Phys. B., 1995. Vol. 452, no. 1–2. Pp. 369–397, arXiv: hep-ph/9502308.
  12. Antonov E. N., Lipatov L. N., Kuraev E. A., Cherednikov I. O. Feynman rules for effective Regge action // Nucl. Phys. B., 2005. Vol. 721, no. 1–3. Pp. 111–135, arXiv: hep-ph/0411185.
  13. Passarino G., Veltman M. One-loop corrections for $e^+ e^-$ annihilation into $mu^+ mu^-$ in the Weinberg model // Nucl. Phys. B., 1979. Vol. 160, no. 1. Pp. 151–207.
  14. Веретин О. Л., Теряев О. В. Аксиальная аномалия при произвольных виртуальностях: Препринт ОИЯИ № P2-94-483. Дубна: ОИЯИ, 1994. 12 с.
  15. Djouadi A. The anatomy of electroweak symmetry breaking: Tome I: The Higgs boson in the Standard Model // Phys. Rept., 2008. Vol. 457, no. 1–4. Pp. 1–216, arXiv: hep-ph/0503172.
  16. Djouadi A. The anatomy of electroweak symmetry breaking Tome II: The Higgs bosons in the Minimal Supersymmetric Model // Phys. Rept., 2008. Vol. 459, no. 1–6. Pp. 1–241, arXiv: hep-ph/0503173.
  17. Ioffe B. L., Fadin V. S., Lipatov L. N. Quantum Chromodynamics, Perturbative and Nonperturbative Aspects. Cambridge, UK: Cambridge University Press, 2010. 596 pp.
  18. Martin A. D., Roberts R. G., Stirling W. J., Thorne R. S. NNLO global parton analysis // Phys. Lett. B, 2002. Vol. 531, no. 3–4. Pp. 216–224, arXiv: hep-ph/0201127.
  19. Kimber M. A., Martin A. D., Ryskin M. G. Unintegrated parton distributions // Phys. Rev. D, 2001. Vol. 63, no. 11, 114027. 10 pp., arXiv: hep-ph/0101348.
  20. Watt G., Martin A. D., Ryskin M. G. Unintegrated parton distributions and electroweak boson production at hadron colliders // Phys. Rev. D, 2004. Vol. 70, no. 1, 014012. 9 pp., arXiv: hep-ph/0309096.
  21. Saleev V. A., Nefedov M. A., Shipilova A. V. Prompt J/ψ production in the Regge limit of QCD: From the Tevatron to the LHC // Phys. Rev. D, 2012. Vol. 85, no. 7, 074013. 9 pp., arXiv: 1201.3464 [hep-ph].
  22. Saleev V. A., Shipilova A. V. Inclusive $b$-jet and $bar b b$-dijet production at the LHC via Reggeized gluons // Phys. Rev. D, 2012. Vol. 86, no. 3, 034032. 9 pp., arXiv: 1201.4640 [hep-ph].
  23. Kniehl B. A., Saleev V. A., Shipilova A. V., Yatsenko E. V. Single jet and prompt-photon inclusive production with multi-Regge kinematics: From Tevatron to LHC // Phys. Rev. D, 2011. Vol. 84, no. 7, 074017. 8 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).