Effective Higgs potential in Next-to-Minimal Supersymmetric Standard Model


Cite item

Abstract

Higgs sector of the Next-to-Minimal Sypersymmetric Model with CP violation in superpotential and in in the soft supersymmetry breaking sector is considered. One-loop corrections to effective potential parameters were calculated and incorporated to the evaluation of neutral Higgs bosons masses.

About the authors

Tatiana V Volkova

Samara State University

Email: milandiya@yandex.ru
Magistrant, Lab. of Mathematical Physics 1, Academician Pavlov st., Samara, 443011, Russia

Mikhail V Dolgopolov

Samara State University

Email: mikhaildolgopolov@rambler.ru
(Ph. D. (Phys. & Math.)), Associate Professor, Dept. of General & Theoretical Physics 1, Academician Pavlov st., Samara, 443011, Russia

Mikhail N Dubinin

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Email: dubinin@theory.sinp.msu.ru
(Dr. Sci. (Phys. & Math.)), Leading Researcher, Division of Theoretical High Energy Physics Vorob’evy gory, Moscow, 119991, Russia

Elza N Rykova

Samara State University

Email: elzarykova@rambler.ru
(Ph. D. (Phys. & Math.)), Senior Lecturer, Dept. of General & Theoretical Physics 1, Academician Pavlov st., Samara, 443011, Russia

References

  1. Nilles H. P., Srednicki M., Wyler D. Weak interaction breakdown induced by supergravity // Phys. Lett. B, 1983. Vol. 120, no. 4–6. Pp. 346–348.
  2. Frère J. M., Jones D. R. T., Raby S. Fermion masses and induction of the weak scale by supergravity // Nucl. Phys. B, 1983. Vol. 222, no. 1. Pp. 11–19.
  3. J. P. Derendinger, C. A. Savoy Quantum effects and SU(2)×U(1) breaking in supergravity gauge theories // Nucl. Phys. B, 1984. Vol. 237, no. 2. Pp. 307–328.
  4. Ellis J. R., Gunion J. F., Haber H. E., Roszkowski L., Zwirner F. Higgs bosons in a nonminimal supersymmetric model // Phys. Rev. D, 1989. Vol. 39, no. 3. Pp. 844–869.
  5. Drees M. Supersymmetric models with extended Higgs sector // Int. J. Mod. Phys. A, 1989. Vol. 4, no. 14. Pp. 3635–3651.
  6. Ellwanger U., de Traubenberg M. Rausch, Savoy C. A. Particle spectrum in supersymmetric models with a gauge singlet // Phys. Lett. B, 1993. Vol. 315, no. 3–4. Pp. 331–337, arXiv: hep-ph/9307322.
  7. Ellwanger U., de Traubenberg M. Rausch, Savoy C. A. Phenomenology of supersymmetric models with a singlet // Nucl. Phys. B, 1997. Vol. 492, no. 1. Pp. 21–50, arXiv: hep-ph/9611251.
  8. King S. F., White P. L. Resolving the constrained minimal and next-to-minimal supersymmetric standard models // Phys. Rev. D, 1995. Vol. 52, no. 7. Pp. 4183–4216, arXiv: hep-ph/9505326.
  9. Kim J. E., Nilles H. P. The µ-problem and the strong CP-problem // Phys. Lett. B, 1984. Vol. 138, no. 1–3. Pp. 150–154.
  10. Giudice G. F., Masiero A. A natural solution to the µ-problem in supergravity theories // Phys. Lett. B, 1988. Vol. 206, no. 3. Pp. 480–484.
  11. KimJ. E., Nilles H. P. Gaugino condensation and the cosmological implications of the hidden sector // Phys. Lett. B, 1991. Vol. 263, no. 1. Pp. 79–85.
  12. Chun E. J., Kim J. E., Nilles H. P. A natural solution of the µ problem with a composite axion in the hidden sector // Nucl. Phys. B, 1992. Vol. 370, no. 1. Pp. 105–122.
  13. Casas J.A., Munoz C. A natural solution to the µ problem // Phys. Lett. B, 1993. Vol. 306, no. 3–4. Pp. 288–294, arXiv: hep-ph/9302227.
  14. Lopes Cardoso G., Lüst D., Mohaupt T. Moduli spaces and target space duality symmetries in (0, 2) ZN orbifold theories with continuous Wilson lines // Nucl. Phys. B, 1994. Vol. 432, no. 1–2. Pp. 68–108, arXiv: hep-th/9405002.
  15. Antoniadis I., Gava E., Narain K. S., Taylor T. R. Effective µ-term in superstring theory // Nucl. Phys. B, 1994. Vol. 432, no. 1–2. Pp. 187–204, arXiv: hep-th/9405024.
  16. Brignole A., Ibánez L. E., Munoz C. Orbifold-induced µ term and electroweak symmetry breaking // Phys. Lett. B, 1996. Vol. 387, no. 4. Pp. 769–774, arXiv: hep-ph/9607405.
  17. Choi K., Lee J. S., Munoz C. Supergravity radiative effects on soft terms and the µ term // Phys. Rev. Lett., 1998. no. 17. Pp. 3686–3689, arXiv: hep-ph/9709250.
  18. Peccei R. D., Quinn H. R. CP conservation in the presence of pseudoparticles // Phys. Rev. Lett., 1977. no. 25. Pp. 1440–1443.
  19. Bastero-Gil M., Hugonie C., King S. F., Roy D. P., Vempati S. Does LEP prefer the NMSSM? // Phys. Lett. B, 2000. Vol. 489, no. 3–4. Pp. 359–366, arXiv: hep-ph/0006198.
  20. Abel S. A., Sarkar S., White P. L. On the cosmological domain wall problem for the minimally extended supersymmetric standard model // Nucl. Phys. B, 1995. Vol. 454, no. 3. Pp. 663–681, arXiv: hep-ph/9506359.
  21. Panagiotakopoulos C., Tamvakis K. Stabilized NMSSM without domain walls // Phys. Lett. B, 1999. Vol. 446, no. 3–4. Pp. 224–227, arXiv: hep-ph/9809475.
  22. Abel S. A. Destabilising divergences in the NMSSM // Nucl. Phys. B, 1996. Vol. 480, no. 1–2. Pp. 55–72, arXiv: hep-ph/9609323.
  23. Bagger J., Poppitz E., Randall L. Destabilizing divergences in supergravity theories at two loops // Nucl. Phys. B, 1995. Vol. 455, no. 1–2. Pp. 59–82, arXiv: hep-ph/9505244.
  24. Bagger J., Poppitz E. Destabilizing divergences in supergravity coupled supersymmetric theories // Phys. Rev. Lett., 1993. Vol. 71, no. 15. Pp. 2380–2382, arXiv: hep-ph/9307317.
  25. Nilles H. P., Srednicki M., Wyler D. Constraints on the stability of mass hierarchies in supergravity // Phys. Lett. B, 1983. Vol. 124, no. 5. Pp. 337–340.
  26. Ellwanger U. Nonrenormalizable interactions from supergravity, quantum corrections and effective low-energy theories // Phys. Lett. B, 1983. Vol. 133, no. 3–4. Pp. 187–191.
  27. Ellwanger U., Hugonie C. Topologies of the (M + 1)SSM with a singlino LSP at LEP2 // Eur. Phys. J. C, 2000. Vol. 13, no. 4. Pp. 681–690, arXiv: hep-ph/9812427.
  28. Ellwanger U., Hugonie C. Masses and couplings of the lightest Higgs bosons in the (M + 1)SSM // Eur. Phys. J. C, 2002. Vol. 25, no. 2. Pp. 297–305, arXiv: hep-ph/9909260.
  29. Ellwanger U., Gunion J. F., Hugonie C. NMHDECAY: A Fortran Code for the Higgs Masses, Couplings and Decay Widths in the NMSSM // JHEP, 2005. Vol. 2005, no. 02, 066, arXiv: hep-ph/0406215.
  30. Ellwanger U., Gunion J. F., Hugonie C., Moretti S. NMSSM Higgs discovery at the LHC, arXiv: hep-ph/0401228.
  31. Ellis J., Gunion J. F., Haber H. E., Roszkowski L., Zwirner F. Higgs bosons in a nonminimal supersymmetric model // Phys. Rev. D, 1989. Vol. 39, no. 3. Pp. 844–869.
  32. Ахметзянова Э. Н., Долгополов М. В., Дубинин M. Н. Бозоны Хиггса в двухдублетной модели с нарушением CP-инвариантности // ЯФ, 2005. Т. 68, № 11. С. 1913–1927.
  33. Ахметзянова Э. Н., Долгополов М. В., Дубинин M. Н. Нарушение CP-инвариантности в двухдублетном хиггсовском секторе МССМ // ЭЧАЯ, 2006. Т. 37, № 5. С. 1285–1382.
  34. Akhmetzyanova E. N., Dolgopolov M. V., Dubinin M. N. Higgs bosons in the two-doublet model with CP violation // Phys. Rev. D, 2005. Vol. 71, no. 7, 075008. 24 pp., arXiv: hep-ph/0405264.
  35. Dolgopolov M., Dubinin M., Erofeev I., Rykova E. Threshold corrections to the MSSM effective Higgs potential: gaugino and higgsino contributions: PoS(QFTHEP2011)068.
  36. Maniatis M. The next-to-minimal supersymmetric extension of the standard model reviewed // Int. J. Mod. Phys. A, 2010. Vol. 25, no. 18n19. Pp. 3505–3602.
  37. Борисов А. О., Долгополов М. В., Дубинин, Э. Н. Рыкова Аналитические выражения для пороговых поправок к температурному потенциалу Хиггса МССМ // ЯФ, 2009. Т. 72, № 1. С. 175–180.
  38. Борисов А. О., Долгополов М. В. Однопетлевые поправки перенормировки поля в скалярном секторе МССМ // ЯФ, 2010. Т. 73, № 6. С. 1130–1133.
  39. Dolgopolov M., Dubinin M., Rykova E. Threshold corrections to the MSSM finite-temperature Higgs potential // J. Mod. Phys., 2011. Vol. 2. Pp. 301–322, arXiv: 0901.0524 [hep-ph].

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).