On the hartman effect and velocity of propagating the electromagnetic wave in the tunneling process
- Authors: Chuprikov N.L1
-
Affiliations:
- Tomsk State Pedagogical University
- Issue: Vol 17, No 2 (2013)
- Pages: 215-222
- Section: Articles
- URL: https://ogarev-online.ru/1991-8615/article/view/20879
- ID: 20879
Cite item
Abstract
A new approach to the problem of scattering the plane electromagnetic TE wave on a homogeneous dielectric layer is presented, which does not predict, unlike the standard model, the Hartman effect for the tunneling time in the case of scattering the TE wave in the regime of a frustrated total internal refection (FTIR). The basic idea of this approach is that a correct definition of the tunneling velocity and time is possible if only the dynamics of both its subprocesses — transmission and reflection — is known at all stages of the scattering process investigated. It is shown that the Wigner (group) tunneling time was introduced without taking into account of this requirement, and, as a consequence, both this characteristic itself and the associated with it Hartman effect have no relation to transferring the light energy through the layer. The dwell transmission time, which is directly related to it, does not lead to the Hartman effect.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Nikolay L Chuprikov
Tomsk State Pedagogical University
Email: chnl@tspu.edu.ru
(Dr. Sci. (Phys. & Math.)), Professor, Dept. of Theoretical Physics 60, Kievskaya st., Tomsk, 634061, Russia
References
- Hartman T. E. Tunneling of a Wave Packet // J. Appl. Phys., 1962. Vol. 33, no. 12. Pp. 3427–3433.
- Jakiel J., Olkhovsky V. S., Recami E. On superluminal motions in photon and particle tunnellings // Phys. Lett. A, 1998. Vol. 248, no. 2–4. Pp. 156–160.
- Nimtz G. Tunneling Confronts Special Relativity // Found. Phys., 2011. Vol. 41, no. 7. Pp. 1193–1199, arXiv: 003.3944 [quant-ph].
- Papoular D. J., Clade P., Polyakov S. V., McCormick C. F., Migdall A. L., Lett P. D. Measuring optical tunneling times using a Hong–Ou–Mandel interferometer // Optics Express, 2008. Vol. 16, no. 20. Pp. 16005–16012.
- Borjemscaia N., Polyakov S. V., Lett P. D. A. Migdall Single-photon propagation through dielectric bandgaps // Optics Express, 2009. Vol. 18, no. 3. Pp. 2279–2286.
- Brunner N., Scarani V., Wegmuller M., Legrre M., Gisin N. Direct measurement of superluminal group velocity and signal velocity in an optical fiber // Phys. Rev. Lett., 2004. Vol. 93, no. 20, 203902. 4 pp., arXiv: quant-ph/0407155.
- Chiao R. Y., Boyce J., Mitchell M. W. Superluminality and parelectricity: The ammonia maser revisited // Appl. Phys. B, 1995. Vol. 60, no. 2–3. Pp. 259–265.
- Büttiker M., Landauer R. Traversal time for tunneling // Phys. Rev. Lett., 1982. Vol. 49, no. 23. Pp. 1739–1742.
- Чуприков Н. Л. Новый взгляд на квантовый процесс туннелирования: Волновые функции для прохождения и отражения // Изв. вузов. Физика, 2006. Т. 49, № 2. С. 3–9.
- Chuprikov N. L. On a new mathematical model of tunnelling // Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2008. no. 8/1(67). Pp. 625–633.
- Chuprikov N. L. From a 1D Completed Scattering and Double Slit Diffraction to the Quantum-Classical Problem for Isolated Systems // Found. Phys., 2011. Vol. 41, no. 9. Pp. 1502–1520.
- Born M., Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. New York: Cambridge U. P., 1999 [1959]. 952 pp.
- Шварцбург А. Б. Туннелирование электромагнитных волн — парадоксы и перспективы // УФН, 2007. Т. 177, № 1. С. 43–58.
Supplementary files

