Метод решения задачи о чистом сдвиге стохастически неоднородной плоскости в условиях установившейся ползучести


Цитировать

Аннотация

Разработан аналитический метод решения нелинейной задачи установившейся ползучести при чистом сдвиге стохастически неоднородной плоскости на основе второго приближения метода малого параметра. Введено ограничение о малости упругих деформаций, которыми допустимо пренебречь. Стохастичность введена в определяющие соотношения ползучести, взятые в соответствии с нелинейной теорией вязкого течения, при помощи случайной однородной функции координат. С использованием метода разложения компонент тензора напряжений по малому параметру до членов второго порядка малости получена система дифференциальных уравнений в частных производных относительно напряжений для первого и второго приближений. Решение системы строилось путём введения функции напряжений. Вычислены математическое ожидание и дисперсии случайного поля напряжений. Проведён анализ результатов, полученных в первом и втором приближениях.

Об авторах

Николай Николаевич Попов

Самарский государственный технический университет

Email: ponick25@gmail.com
(к.ф.-м.н., доц.), доцент, каф. прикладной математики и информатики 443100, Россия, Самара, ул. Молодогвардейская, 244

Ольга Олеговна Чернова

Самарский государственный технический университет

Email: chernova_olga@citydom.ru
младший научный сотрудник, каф. прикладной математики и информатики 443100, Россия, Самара, ул. Молодогвардейская, 244

Список литературы

  1. Ломакин В. А. Статистические задачи механики твёрдых деформируемых тел. М.: Наука, 1970. 137 с.
  2. Ломакин В. А. Проблемы механики структурно-неоднородных тел // Изв. АН СССР. МТТ, 1978. № 6. С. 45–52.
  3. Попов Н. Н., Яшин М. А. Исследование случайных полей напряжений при чистом сдвиге стохастически неоднородной полуплоскости в условиях ползучести // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2010. № 1(20). С. 104–110.
  4. Радченко В. П., Попов Н. Н. Стохастические характеристики полей напряжений и деформаций при установившейся ползучести стохастически неоднородной плоскости // Изв. вузов. Машиностроение, 2006. № 2. С. 3–11.
  5. Попов Н. Н., Коваленко Л. В., Яшин М. А. Решение плоской нелинейной стохастической задачи ползучести методом спектральных представлений // Вестн. Сам. гос. техн. унта. Сер. Физ.-мат. науки, 2009. № 2(19). С. 99–106.
  6. Вентцель Е. С., Овчаров Л. А. Прикладные задачи теории вероятностей. М.: Радио и связь, 1983. 416 с.
  7. Пугачев В. С. Теория вероятностей и математическая статистика. М.: Физматлит, 2002. 496 с.
  8. Попов Н. Н., Чернова О. О. Решение нелинейной задачи ползучести для стохастически неоднородной плоскости на основе второго приближения метода малого параметра // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2011. № 4(25). С. 50–58.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2012

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).