О задаче со смещением для одного уравнения в частных производных


Цитировать

Аннотация

Для уравнения смешанного типа исследована однозначная разрешимость задачи с обобщёнными операторами дробного интегро-дифференцирования в краевом условии. Доказана теорема единственности решения нелокальной задачи, доказательство существования решения эквивалентно сводится к вопросу разрешимости интегрального уравнения Фредгольма второго рода.

Об авторах

Анна Валерьевна Тарасенко

Самарский государственный технический университет

Email: tarasenko.a.v@mail.ru
аспирант, каф. прикладной математики и информатики Россия, 443100, Самара, ул. Молодогвардейская, 244

Список литературы

  1. С. Г. Самко, А. А. Килбас, О. И. Маричев, Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688 с.
  2. А. Н. Кочубей, “Диффузия дробного порядка” // Диффер. уравн., 1990. Т. 26, № 4. С. 660–670.
  3. А. А. Килбас, О. А. Репин, “Аналог задачи Бицадзе–Самарского для уравнения смешанного типа с дробной производной” // Диффер. уравн., 2003. Т. 39, № 5. С. 638–644.
  4. А. В. Псху, Уравнения в частных производных дробного порядка. М.: Наука, 2005. 199 с.
  5. З. А. Нахушева, Нелокальные краевые задачи для основных и смешанного типов дифференциальных уравнений. Нальчик: КБНЦ РАН, 2011. 196 с.
  6. В. А. Нахушева, Дифференциальные уравнения математических моделей нелокальных процессов. М.: Наука, 2006. 173 с.
  7. M. Saigo, “A remark on integral operators involving the Gauss hypergeometric functions” // Math. Rep. College General Educ., Kyushu Univ., 1978. Vol. 11, no. 2. Pp. 135–143.
  8. Г. Бейтмен, А. Эрдейи, Высшие трансцендентные функции. Т. 3: Эллиптические и автоморфные функции. Функции Ламе и Матье. М.: Наука, 1967. 301 с.
  9. М. М. Смирнов, Уравнения смешанного типа. М.: Наука, 1970. 295 с.
  10. Ф. Трикоми, Лекции по уравнениям в частных производных. М.: Иностр. Лит., 1957. 443 с.
  11. О. А. Репин, С. К. Кумыкова, “Об одной краевой задаче со смещением для уравнения смешанного типа в неограниченной области” // Диффер. уравн., 2012. Т. 48, № 8. С. 1140–1149.
  12. А. А. Килбас, О. А. Репин, “Нелокальная задача для уравнения смешанного типа с частной производной Римана–Лиувилля и операторами обобщенного дробного интегрирования в краевом условии” // Тр. Инст. мат., Минск, 2004. Т. 12, № 2. С. 75–81.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2013

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).