Быстрая оценка минимального расстояния между двумя конфокальными гелиоцентрическими орбитами


Цитировать

Полный текст

Аннотация

Рассматривается один из аспектов задачи отнесения астероида к классу потенциально опасных для Земли астероидов, а именно, проблема оценки параметра MOID (Minimum Orbital Intersection Distance), характеризующего минимальное расстояние между двумя конфокальными гелиоцентрическими орбитами небесных тел. Рассмотрены аналитические, численные и численно-аналитические методы, применяемые для оценки параметра MOID. Дано краткое описание аналитических методов К. В. Холшевникова и G. F. Gronchi, считающихся классическими. Поставлена задача вычисления параметра MOID для большого количества астероидов (более 10 000) с максимальной скоростью расчетов и возможностью параллелизации процесса. Предложен численный метод оценки, имеющий в основе геометрические соображения относительно расположения тел на орбитах. Рассматриваются два тела: A и E. Так как в постановке задачи требуется рассчитать минимальное расстояние между орбитами, информация о фактических положениях тел на их орбитах не рассматривается. Для тела A просчитывается полный оборот по орбите. Для каждого положения тела A находится соответствующее ему положение тела E. Положение тела E рассчитывается из следующего предположения. В рассмотрение вводится плоскость P , содержащая тело A, Солнце и перпендикулярная плоскости орбиты тела E. Из двух точек, в которых плоскость P пересекает орбиту тела E, считается, что тело E находится в ближайшей к телу A. Таким образом, положение тела E будет зависеть от положения тела A. На основе геометрических соотношений из треугольника, образованного Солнцем и двумя телами, находится расстояние между телами A и E. После просчета с определенным шагом одного полного оборота тела A по орбите получается набор значений расстояний, из которого определяются области локальных минимумов дискретного представления функции расстояния между орбитами тел A и E. Затем производится процедура уточнения найденных значений локальных минимумов дискретного представления функции расстояния. В итоге за минимальное расстояние между орбитами (параметр MOID) принимается наименьший из найденных локальных минимумов. Достоинства метода: высокая скорость и настраиваемая точность вычислений, возможность использования параллельных вычислений. Проведены сравнительные испытания описываемого метода. Полученные результаты согласуются с классическим методом.

Об авторах

Андрей Евгеньевич Деревянка

Самарский государственный технический университет

Email: AndrDerev@gmail.com
аспирант, каф. прикладной математики и информатики Россия, 443100, Самара, ул. Молодогвардейская, 244

Список литературы

  1. Tancredi G. A criterion to classify asteroids and comets based on the orbital parameters // Icarus, 2014. vol. 234. pp. 66-80. doi: 10.1016/j.icarus.2014.02.013.
  2. Milani A., Chesley S. R., Valsecchi G. B. Asteroid close encounters with Earth: Risk assessment // Planetary and Space Science, 2000. vol. 48, no. 10. pp. 945-954. doi: 10.1016/s0032-0633(00)00061-1.
  3. Milani A. The asteroid identification problem I. Recovery of lost asteroids // Icarus, 1999. vol. 137, no. 2. pp. 269-292. doi: 10.1006/icar.1999.6045.
  4. Sitarski G. Approaches of the parabolic comets to the outer planets // Acta Astronomica, 1968. vol. 18, no. 2. pp. 171-195.
  5. Milani A., Chesley S. R., Valsecchi G. B. Asteroid Close Approaches: Analysis and Potential Impact Detection / Asteroids III ; eds. W. Bottke, A. Cellino, P. Paolicchi, and R. P. Binzel: University of Arizona Press, 2002. pp. 55-69.
  6. Kholshevnikov K. V., Vassiliev N. N. On the distance function between two Keplerian elliptic orbits // Celestial Mechanics and Dynamical Astronomy, 1999. vol. 75, no. 2. pp. 75-83. doi: 10.1023/A:1008312521428.
  7. Baluyev R. V., Kholshevnikov K. V. Distance between two arbitrary unperturbed orbits // Celestial Mechanics and Dynamical Astronomy, 2005. vol. 91, no. 3-4. pp. 287-300. doi: 10.1007/s10569-004-3207-1.
  8. Gronchi G. F., Tommei G., Milani A. Mutual geometry of confocal Keplerian orbits: uncertainty of the MOID and search for virtual PHAs // Proceedings of the International Astronomical Union, 2006. vol. 2, no. S236. pp. 3-14. doi: 10.1017/s1743921307003018.
  9. Gronchi G. F. An Algebraic Method to Compute the Critical Points of the Distance Function Between Two Keplerian Orbits // Celestial Mechanics and Dynamical Astronomy, 2005. vol. 93, no. 1-4. pp. 295-329. doi: 10.1007/s10569-005-1623-5.
  10. Gronchi G. F. On the stationary points of the squared distance between two ellipses with a common focus // SIAM J. Sci. Comput., 2002. vol. 20, no. 1. pp. 61-80. doi: 10.1137/s1064827500374170.
  11. Armellin R., Di Lizia P., Berz M., Makino K. Computing the critical points of the distance function between two Keplerian orbits via rigorous global optimization // Celestial Mechanics and Dynamical Astronomy, 2010. vol. 107, no. 3. pp. 377-395. doi: 10.1007/s10569-010-9281-7.
  12. Wićniowski T., Rickman H. Fast Geometric Method for Calculating Accurate Minimum Orbit Intersection Distances (MOIDs) // Acta Astronomica, 2013. vol. 63, no. 2. pp. 293-307.
  13. Vasile M., Colombo C. Optimal Impact Strategies for Asteroid Deflection // Journal of Guidance, Control and Dynamics, 2008. vol. 31, no. 4. pp. 858-872. doi: 10.2514/1.33432.
  14. Besse I. M., Rhee N. H. A numerical method for calculating minimum distance to Near Earth Objects // Applied Mathematics and Computation, 2014. vol. 237. pp. 274-281. doi: 10.1016/j.amc.2014.03.115.
  15. Maršeta D., Segan S. The distributions of positions of Minimal Orbit Intersection Distances among Near Earth Asteroids // Advances in Space Research, 2012. vol. 50, no. 2. pp. 256-259. doi: 10.1016/j.asr.2012.04.005.
  16. Carusi A., Dotto E. Close Encounters of Minor Bodies with the Earth // Icarus, 1996. vol. 124, no. 2. pp. 392-398. doi: 10.1006/icar.1996.0216.
  17. Milisavljevic S. The proximities of asteroids and critical points of the distance function // Serbian Astronomical Journal, 2010. vol. 180. pp. 91-102. doi: 10.2298/saj1080091m.
  18. Segan S., Milisavljević S., Maršeta D. A combined method to compute the proximities of asteroids // Acta Astronomica, 2011. vol. 61, no. 3. pp. 275-283.
  19. Hoots F. R., Crawford L. L., Roehrich R. L. An analytical method to determine future close approaches between satellites // Celestial Mechanics and Dynamical Astronomy, 1984. vol. 33, no. 2. pp. 143-158. doi: 10.1007/bf01234152.
  20. Dybczyński P. A., Jopek T. J., Serafin R. A. On the minimum distance between two Keplerian orbits with a common focus // Celestial Mechanics and Dynamical Astronomy, 1986. vol. 38, no. 4. pp. 345-356. doi: 10.1007/bf01238925

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2014

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).