Estimation of the order of the matrix method approximation of numerical integration of boundary-value problems for the second order inhomogeneous linear ordinary differential equations
- Authors: Maklakov V.N1
-
Affiliations:
- Samara State Technical University
- Issue: Vol 18, No 3 (2014)
- Pages: 143-160
- Section: Articles
- URL: https://ogarev-online.ru/1991-8615/article/view/20764
- DOI: https://doi.org/10.14498/vsgtu1364
- ID: 20764
Cite item
Full Text
Abstract
Using the first three terms of Taylor expansion of the required function in the approximate derivative by finite differences leads to the second order approximation of the traditional numerical quadrature method of boundary value problems for linear ordinary second order differential equations with variable coefficients. The paper shows previously proposed numerical quadrature method using tools of matrix calculus where the approximate derivative by finite differences was not used. Agreeing to above method the arbitrary number of terms of Taylor expansion for the required solution may be used when compiling the difference equation system. When using the three first terms of expansion the difference equation system coincided with the traditional system. The estimation of residuals and the order of approximation depending on the number of the used terms of Taylor expansion is given. It is theoretically shown that for the boundary value problem with boundary conditions of the first kind the approximation method order increases in direct proportion with the increasing in the number of members used in Taylor series expansion only for odd values of this number. For even values of this number the order of approximation coincides with the order of approximation for the number less by unit of the odd values. For boundary value problems with boundary conditions of the second and third kinds the order of approximation was directly proportional to the number of used terms in the Taylor series expansion of the required solution of the problem regardless of evenness. In these cases the order of approximation of the boundary points and therefore the whole problem turned out to be one unit less than the order for the inner points of the grid for the interval of integration. The method of approximation order increase at the boundary points up to the approximation order in the inner points of the grid is presented. The theoretical conclusions are confirmed by a numerical experiment for a boundary value problem with boundary conditions of the first and third kinds.
Full Text
##article.viewOnOriginalSite##About the authors
Vladimir N Maklakov
Samara State Technical University
Email: makvo63@yandex.ru
(Cand. Phys. & Math. Sci.; makvo63@yandex.ru), Associate Professor, Dept. of Higher Mathematics and Applied Informatics 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation
References
- Keller H. B. Accurate Difference Methods for Nonlinear Two-point Boundary Value Problems // SIAM J. Numer. Anal., 1974. vol. 11, no. 2. pp. 305-320. doi: 10.1137/0711028.
- Lentini M., Pereyra V. A Variable Order Finite Difference Method for Nonlinear Multipoint Boundary Value Problems // Mathematics of Computation, 1974. vol. 28, no. 128. pp. 981-1003. doi: 10.2307/2005360.
- Keller H. B. Numerical Solution of Boundary Value Problems for Ordinary Differential equations: Survey and Some Resent Results on Difference Methods / Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations; ed. A. K. Aziz. New York: Academic Press, 1975. pp. 27-88. doi: 10.1016/b978-0-12-068660-5.50007-7.
- Годунов С. К., Рябенький В. С. Разностные схемы. Введение в теорию. М.: Наука, 1973. 400 с.
- Самарский А. А. Теория разностных схем. М.: Наука, 1977. 656 с.
- Формалеев В. Ф., Ревизников Д. Л. Численные методы. М.: Физматлит, 2004. 400 с.
- Boutayeb A., Chetouani A. Global Extrapolations of Numerical Methods for a Parabolic Problem with Nonlocal Boundary Conditions // International Journal of Computer Mathematics, 2003. vol. 80, no. 6. pp. 789-797. doi: 10.1080/0020716021000039209.
- Boutayeb A., Chetouani A. A Numerical Comparison of Different Methods Applied to the Solution of Problems with Non Local Boundary Conditions // Applied Mathematical Sciences, 2007. vol. 1, no. 44. pp. 2173-2185.
- Радченко В. П., Усов А. А. Модификация сеточных методов решения линейных дифференциальных уравнений с переменными коэффициентами на основе тейлоровских разложений // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2008. № 2(17). С. 60-65. doi: 10.14498/vsgtu646.
- Маклаков В. Н. Численное интегрирование матричным методом смешанных краевых задач для линейных неоднородных обыкновенных дифференциальных уравнений второго порядка // Современный научный вестник, 2013. № 16 (155). С. 72-78.
- Маклаков В. Н., Усов А. А. Численное интегрирование матричным методом краевых задач для нелинейных обыкновенных дифференциальных уравнений второго порядка с использованием итерационных процедур / Труды девятой Всероссийской научной конференции с международным участием (21-23 мая 2013 г.). Часть 3: Дифференциальные уравнения и краевые задачи / Матем. моделирование и краев. задачи. Самара: СамГТУ, 2013. С. 35-42.
- Турчак Л. И. Основы численных методов. М.: Наука, 1987. 320 с.
- Закс Л. Статистическое оценивание. М.: Статистика, 1976. 598 с.
Supplementary files

