Solving the classification problem by using neural fuzzy production based network models of Mamdani-Zadeh


Cite item

Full Text

Abstract

The article considers solving the problem of object recognition of intersected classes using fuzzy inference systems and neural networks. New multi-output network of Wang-Mendel is compared to a new architecture of neural fuzzy production network based on the model of Mamdani-Zadeh. Learning results of these models are given in the interpretation of logical operations provided by Godel, Goguen and Lukasiewicz algebras. New Wang-Mendel’s network can use minimum or sum-based formula as T-norm operation in accordance with an appropriate algebra rather than the standard multiplication only. Mamdani-Zadeh's network is designed as a cascade of T-norm, implication and S-norm operations defined by selected algebra. Moreover defuzzification layer is not presented in Mamdani-Zadeh’s network. Both networks have several outputs in accordance with the number of subject area classes what differs them from the basic realizations. Compliance degrees of an input vector to defined classes are formed at the network outputs. To compare the models the standard Fisher’s irises and Italian wines classification problems were used. This article presents the results calculated by training the networks by backpropagation algorithm. Classification error analysis shows that the use of these algebras as interpreting fuzzy logic operations proposed in this paper can reduce the classification error for both multi-output network of Wang-Mendel and a new network of Mamdani-Zadeh. The best learning results are shown by Godel algebra, but Lukasiewicz algebra demonstrates better generalizing properties while testing, what leads to a less number of classification errors.

About the authors

Ol'ga P Soldatova

S. P. Korolyov Samara State Aerospace University (National Research University)

Email: op-soldatova@yandex.ru
(Cand. Techn. Sci.), Associate Professor, Dept. Information Systems and Technolog 34, Moskovskoe sh., Samara, 443086, Russian Federation

Il'ya A Lyozin

S. P. Korolyov Samara State Aerospace University (National Research University)

Email: ilyozin@yandex.ru
(Cand. Techn. Sci.), Associate Professor, Dept. Information Systems and Technolog 34, Moskovskoe sh., Samara, 443086, Russian Federation

References

  1. L. X. Wang, J. M. Mendel, “Generating fuzzy rules by learning from examples” // IEEE Trans. Syst., Man, Cybern., 1992. vol. 22, no. 6. pp. 1414-1427. doi: 10.1109/isic.1991.187368.
  2. Li-Xin Wang, “The WM method completed: a flexible fuzzy system approach to data mining” // IEEE Trans. Fuzzy Systems, 2003. vol. 11, no. 6. pp. 768-782. doi: 10.1109/TFUZZ.2003.819839.
  3. L. A. Zadeh, “Fuzzy logic, neural networks, and soft computing” // Communications of the ACM, 1994. vol. 37, no. 3. pp. 77-84.
  4. E. H. Mamdani, “Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis” // IEEE Trans. Computers, vol. C-26, no. 12, pp. 1182-1191. doi: 10.1109/tc.1977.1674779.
  5. С. Осовский, Нейронные сети для обработки информации. М.: Финансы и статистика, 2002. 344 с.
  6. О. П. Солдатова, “Многофункциональный имитатор нейронных сетей” // Программные продукты и системы, 2012. № 3. С. 27-31.
  7. Д. Рутковская, М. Пилиньский, Л. Рутковский, Нейронные сети, генетические алгоритмы и нечёткие системы. М.: Горячая линия-Телеком, 2007. 452 с.
  8. V. Novák, I. Perfilieva, J. Močkoř, Mathematical Principles of Fuzzy Logic / The Springer International Series in Engineering and Computer Science, vol. 517, Springer, 1999. xiii+320 pp. doi: 10.1007/978-1-4615-5217-8
  9. В. Новак, И. Перфильева, И. Мочкорж, Математические принципы нечёткой логики. Физматлит: М., 2006. 352 с.
  10. В. В. Борисов, В. В. Круглов, А. С. Федулов, Нечеткие модели и сети. М.: Горячая линия-Телеком, 2007. 284 с.
  11. А. С. Катасёв, “Математическое обеспечение и программный комплекс формирования нечётко-продукционных баз знаний для экспертных диагностических систем” // Фундаментальные исследования, 2013. № 10-9. С. 1922-1927.
  12. В. В. Бухтояров, “Трехступенчатый эволюционный метод формирования коллективов нейронных сетей для решения задач классификации” // Программные продукты и системы, 2012. № 4. С. 101-106.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).